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Preface

This book finds new things to do with an old idea. The proofs-as-programs
paradigm constitutes a set of approaches to developing programs from proofs
in constructive logic. It has been over thirty years since the paradigm was first
conceived. At that time, there was a belief that proofs-as-programs had the po-
tential for practical application to semi-automated software development. Ini-
tial applications were mostly concerned with fine-grain, mathematical program
synthesis. For various reasons, research interest in the area eventually tended
toward more theoretic issues of constructive logic and type theory. However, in
recent years, the situation has become more balanced, and there is increasingly
active research in applying constructive techniques to industrial-scale, complex
software engineering problems.

This monograph details several important advances in this direction of prac-
tical proofs-as-programs.

One of the central themes of the book is a general, abstract framework for
developing new systems of program synthesis by adapting proofs-as-programs
to new contexts. Framework-oriented approaches that facilitate analogous ap-
proaches to building systems for solving particular problems have been popular
and successful. These methods are helpful as they provide a formal toolbox that
enables a “roll-your-own” approach to developing solutions. It is hoped that our
framework will have a similar impact.

The framework is demonstrated by example. We will give two novel ap-
plications of proofs-as-programs to large-scale, coarse-grain software engineer-
ing problems: contractual imperative program synthesis and structured pro-
gram synthesis. These applications constitute an exemplary justification of the
framework. Also, in and of themselves, these approaches to synthesis should be
interesting for researchers working in the target problem domains.

The monograph serves a dual purpose of providing a state-of-the-art overview
of the field and detailing tools and techniques to stimulate further research. The
intended audience is graduate students in computer science or mathematics, the
proofs-as-programs research community, and the wider computational logic, for-
mal methods, and software engineering communities.



vi Preface

The ideas presented in this monograph originate from research conducted
over the past five years by Iman Poernomo and John Crossley at Monash Univer-
sity in collaboration with Martin Wirsing at Ludwig–Maximilians Universität.
A significant portion of the monograph is based on the PhD thesis of Iman Po-
ernomo [Poe03b]. Some of the results were presented previously in conference
papers and journal articles. Part II of the book presents ideas that resulted
from work of Poernomo and Crossley [PC01], [CP01] and [JPBC03]. Part III
ellaborates and extends the work done in [Poe99], [PC03] and [Poe03a]. Part IV
extends work that was first presented in [CPW00] and [PCW02] by Crossley,
Poernomo and Wirsing.

Several people have helped us in the preparation of this book. We are par-
ticularly grateful to John Shepherdson and Masahiko Sato for their valuable
comments and suggestions for improvement. We also thank John Jeavons, Bo-
lis Basit, Helmut Schwichtenberg, Dirk Pattinson, Stuart Allen and the Nuprl
seminar group for fruitful discussions.

Iman Hafiz Poernomo
Caulfield East
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Overview

The Curry–Howard isomorphism says that intuitionistic logic can be presented
as a constructive type theory in which proofs correspond to terms, formulae to
types, logical rules to type inference and proof normalization to term simplifi-
cation. In order to represent intuitionistic proofs, terms of the constructive type
theory contain constructive information used to prove formulae. This informa-
tion can be used to synthesize correct, error-free programs from proofs. Such
approaches to program synthesis, based upon the Curry–Howard isomorphism,
constitute the area referred to as the proofs-as-programs paradigm.

The advantage of proofs-as-programs techniques is that the task of pro-
gramming a function is reduced to reasoning with domain knowledge. After
more than three decades of research, proofs-as-programs constitutes a mature
field with an established theory and set of best practices. State-of-the-art ap-
proaches to proofs-as-programs usually involve some form of optimization and
extraction strategy, transforming intuitionistic proofs to a commonly used func-
tional programming language that can encode a simply typed lambda calculus,
such as SML, Scheme or Haskell.

Work has been done in providing analogous results to the Curry–Howard
isomorphism and proofs-as-programs for other logical systems and programming
languages. However, little work has been done in identifying a general framework
that generalizes the form such analogies should take over arbitrary logical calculi
and programming languages. Such a framework would serve as a guide to go
about adapting proofs-as-programs to new contexts.

This book defines such a framework, which we call the Curry–Howard pro-
tocol. It requires an analogous property to the Curry–Howard isomorphism to
hold between a given logic and type theory. However, generalizing state-of-the-
art approaches to proofs-as-programs, the protocol requires an optimization and
extraction strategy from proofs represented in the logical type theory to pro-
grams in a separate programming language. While program synthesis methods
have been developed that conform to our protocol, such a framework has not
been explicitly identified previously.



viii Overview

We then use the protocol to show how proofs-as-programs can be adapted
to two different contexts.

• Proofs-as-imperative-programs. The Hoare logic provides a method for the
simultaneous development of imperative programs and proofs of their prop-
erties. We adapt proofs-as-programs to the Hoare logic for the purpose of
extending it to developing imperative programs with side-effect-free return
values and views on state.

• Structured proofs-as-programs. Structured algebraic specifications are an ap-
proach to the compositional design of software systems based on the de-
velopment of data types. There are proof systems that enable us to reason
about structured specifications. We develop such a system and use proofs-as-
programs–style techniques for the synthesis of programs from proofs about
specifications, and the eventual refinement of specifications into structured
code.

These adaptations constitute an exemplary justification for the applicability of
the protocol to different contexts.
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1

Introduction

Ultimately, software developers would like to solve problems by building well-
structured, comprehensible, correct programs, solely through the application
of domain knowledge. The proofs-as-programs paradigm has been proposed as
a means of achieving this goal. These methods use constructive, intuitionistic
logic and the Curry–Howard isomorphism to generate correct programs from
proofs of their specifications [CMH86, HKPM97, CS93, PC01]. The programs
generated are pure functions (stateless programs written in languages such as
SML, Haskell, Scheme or LISP). The advantage of these techniques is that the
task of programming a function is reduced to reasoning with domain knowledge.

After more than thirty years of research, proofs-as-programs constitutes a
mature field with an established theory and set of best practices.

An active area of research concerns analogous results to the Curry–Howard
isomorphism and proofs-as-programs for other programming paradigms and
logical systems. Such adaptations leverage the successes of proofs-as-programs
in correct, domain-knowledge–oriented development, for a wider range of pro-
gramming and reasoning contexts.

The usefulness of these results lead us to question if there exists a general
framework for adapting proofs-as-programs. A framework would serve as a guide
to go about adapting proofs-as-programs to new contexts, abstracting properties
and constraints required of a logic and programming language for program
synthesis to be achieved. This book defines such a framework, which we call the
Curry–Howard protocol.

We shall use the protocol to adapt proofs-as-programs for two different con-
texts:

• Proofs-as-imperative-programs. The Hoare logic of [Hoa69] provides a method
for the simultaneous development of imperative programs and proofs of their
properties. We adapt proofs-as-programs to the Hoare logic for the purpose
of extending it to the synthesis of imperative programs with side-effect-free
return values and views on state.
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• Structured proofs-as-programs and structured program synthesis. Structured
algebraic specifications are an approach to the compositional design of soft-
ware systems based on the development of data types [Wir90, CoF01]. One
important area of research is proof systems that enable us to reason about
these specifications. We develop such a system and use proofs-as-programs–
style techniques for the synthesis of programs from proofs about specifica-
tions, and the eventual refinement of specifications into structured code.

These adaptations are significant results in themselves and therefore consti-
tute an exemplary justification for the applicability of the protocol to different
contexts.

1.1 Proofs-as-programs

The term proofs-as-programs originates from the title of Bates and Constable’s
paper [BC85]. Proofs-as-programs methods enable the synthesis of programs us-
ing constructive type theory and the Curry–Howard isomorphism. These meth-
ods may be more widely classified as deductive methods of program synthesis,
following Tyugu [Tyu88, p. 8]. In deductive synthesis, a program that solves
a problem is derived from the deduction of solvability of the problem. This is
in contrast to, for example, refinement-based methods of synthesis, where pro-
grams are derived by means of verified transformation steps from an abstract
model.

In proofs-as-programs, correct functional programs are synthesized from in-
tuitionistic proofs of specifications. For instance, if a proof of ∀x : t • ∃y :
s •A(x, y) is given, then a computable function f can be synthesized from the
proof. The function is a “correct” program in the sense that ∀x : t •A(x, f(x))
is satisfied [How80].

This sense of correctness corresponds to a form of constructive realizability
in the sense defined by Kreisel [Kre59, BS95a, Dil80]. (See Appendix A for an
overview of intuitionistic logic, constructive type theory and realizability.) The
correctness property is guaranteed to hold because f is synthesized from the
constructive content of the intuitionistic proof. From the perspective of the de-
signer, implementation details are hidden, i.e., encapsulated as the constructive
content of the proof. Programs are developed solely through reasoning with
domain knowledge encoded as axioms and theorems of intuitionistic logic.

By the property known as the Curry–Howard isomorphism, a form of type
theory can be used to represent intuitionistic proofs, storing constructive con-
tent from which it is possible to synthesize correct, realizing programs.

The proofs-as-programs paradigm has evolved over time, from what we clas-
sify as näıve approaches, to sophisticated, state-of-the-art approaches. The for-
mer approaches use constructive type theory as a programming language itself,
and realizability to define program correctness. In the latter approaches, a proof
is transformed and optimized into a program of a commonly used functional
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programming language (such as Scheme, SML or Haskell). A different notion
of correctness is employed, which is obtained by modifying the concept of real-
izability to apply between functional programs and formulae.

In this book, we will be concerned with the adaptation of state-of-the-art
approaches to different logical and programming contexts.

1.1.1 The Curry–Howard isomorphism

Proofs-as-programs is based on the the Curry–Howard isomorphism. This prop-
erty tells us that intuitionistic logic can be represented by a kind of type theory
where proofs correspond to terms, formulae to types, logical rules to type in-
ference, and proof normalization to term simplification. The original idea was
first described by Curry [Cur34] and extended to intuitionistic first order logic
by Howard [How80].

Essentially, a constructive type theory corresponding to intuitionistic pred-
icate logic is a typed lambda calculus with dependent product and sum types,
and disjoint unions. The rules of natural deduction then have corresponding
type formation rules.
Example 1.1. The formula (A∨B) in intuitionistic logic can be considered as a
disjoint union type of constructive type theory. The (∨-I1) rule of intuitionistic
natural deduction corresponds to a typing rule

Γ � pA

Γ � inl(p)(A∨B)
(∨-I1)

The rule tells us that the term inl(p) is correctly typed by (A ∨ B), provided
that p is typed by A.
Example 1.2. The (∀-I) rule of natural deduction for first order intuitionistic
logic with arithmetic corresponds to a typing rule

Γ � pA[y/x]

Γ � λx.p∀x•A
(∀-I)

The rule tells us that λx.p is correctly typed with ∀x • A, provided that p is
typed by A[y/x]. The formula ∀x •A is taken as a dependent product type, by
virtue of the type inference rule corresponding to (∀-E):

Γ � p∀x•A

Γ � (pa)A[a/x]
(∀-E)

This is the elimination rule for dependent product types, showing that ∀x • A
parametrizes the type A over possible instantiation by a term a.

First order, and many-sorted, logics have straightforward type theories —
see, for instance, the type theory of Schwichtenberg in [Sch99b, pp. 1–13]. Cross-
ley and Shepherdson [CS93] provide a constructive type theory that was ex-
tended by Crossley and Poernomo in [PC01, CP01] to be modular over sorts
(with datatypes such as natural numbers, booleans, and lists).
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The Curry–Howard isomorphism can also be applied to a range of fully
higher-order constructive type theories, each corresponding to a different form
of intuitionistic logic that permits predication over logical formulae. The pred-
icative type theories of Martin–Löf [ML75, ML84] restrict quantification accord-
ing to hierarchies of type universes. In contrast, the impredicative type theories
of, for instance, Girard [Gir72], Reynolds [Rey74] and Coquand [MLM90] per-
mit quantification over types to form a type itself. (See Appendix A for more
background details.)

1.1.2 Näıve proofs-as-programs

The earliest proofs-as-programs approaches directly invoke the Curry–Howard
isomorphism to extract programs by identifying terms of constructive type the-
ory with programs. We classify these approaches as näıve, because they directly
take constructive type theory as a programming language, rather than synthe-
sizing programs in a conventional language.

The idea is simple, following directly from the properties of type theory.
The terms of a constructive type theory constitute a lambda calculus that
is equipped with reduction rules. By the isomorphism, the closure of these
reduction rules corresponds to proof normalization. Also, these rules, considered
as operational semantics, permit us to regard the type theory as an executable
functional programming language. A formula is considered as a specification
of input/output behavior, and realizability defines how a program satisfies a
specification. By constructing a realizing proof we simultaneously provide an
algorithm that satisfies the specification.

Thus a proof can be viewed as an executable, functional program.
This style of proofs-as-programs has been defined for higher-order predica-

tive type theories by Martin–Löf [ML85] and by Constable and Mendler who
implemented it in the Prl and Nuprl systems [BC85, CMH86]. Program syn-
thesis of this form has also been defined for the impredicative Calculus of Con-
structions by Coquand and Huet in [CH88], implemented in the Coq system.
(See Appendix A for an overview of these higher-order type theories.)
Example 1.3. For example, given an intuitionistic proof of ∀x : t•∃y : s•A(x, y),
we can form a corresponding term p in a Martin–Löf type theory of the form

λx : t.(g1(x) : s, g2(x) : A(x, y)) : ∀x : t • ∃y : s •A(x, y)

If we define
f = λx : t.π1(p x)

(where π1 is the first projection) then f is considered a program such that, on
every input x : t, (fx) terminates and ∀x : t • A(x, (fx)) is satisfied, and is
consequently a correct program corresponding to a proof of the specification.
The former item holds because it is possible to show that the terms are strongly
normalizing, while the latter item is true because the terms form realizers for
types.



1.1 Proofs-as-programs 7

1.1.3 State-of-the-art proofs-as-programs

There are practical limitations to the use of the constructive type theories used
in näıve approaches. These concern the efficiency and usability of resulting pro-
grams: terms of a constructive type theory generally contain computationally
irrelevant information, and have types that are only representable in experi-
mental programming languages.

Commonly used functional programming languages, such as SML, Haskell
or Scheme do not have dependent sum and product type constructors. But these
constructors are essential for defining types that correspond to first-order and
many-sorted formulae such as ∀x : t • ∃y : s •A(x, y). Consequently, to execute
a realizing, inhabiting term, a custom-built compiler or interpreter for the type
theory must be written. This is the situation for the Nuprl and Coq systems.
Currently these implementations are not bytecode compilers but are rather
interpreters encoded within a conventional functional programming language,
which is, in turn, interpreted rather than compiled. For larger scale practical
programming problems, this can result in inefficient code that is not reusable
or maintainable.

A further problem is that lambda terms corresponding to intuitionistic
proofs often encode irrelevant, non-constructive information. Such irrelevant
information is introduced when proving Harrop formulae [Har60].
Example 1.4. The atomic formula y = 2 ∗ x is Harrop. Given an intuitionistic
proof of ∀x : int • ∃y : int • y = 2 ∗ x, we might form a corresponding term p in
a Martin–Löf type theory of the form

λx : int.(2 ∗ x, q) : ∀x : int • ∃y : int •A(x, y)

The number 2∗x is the witness term for the y in the existential statement. The
term p denotes the proof that 2 ∗ x can stand for y in y = 2 ∗ x and give a true
statement. The witness term is the constructive information in the proof and,
consequently, is of interest to us. The term q is irrelevant from a computational
perspective (but, of course, relevant from a logical view).

To solve these problems, later proofs-as-programs approaches distinguish
between proofs of specifications and the programs that are ultimately obtained.
We refer to these approaches as state-of-the-art (SOA) proofs-as-programs.

These approaches still use the Curry–Howard isomorphism for representing
proofs within a constructive type theory. However, they do not treat the con-
structive type theory as a programming language. Term simplification is not
identified with program execution but, instead, only with simplification of the
corresponding proof.

SOA approaches synthesize programs of a commonly used functional pro-
gramming language, such as SML, Scheme or Haskell. This is done by means of
an extraction map from proofs (terms of the constructive type theory) to pro-
grams (of the functional language). The resulting programs satisfy the proved
formulae (type of the term) according to a specialized notion of realizability
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that takes into account redundant non-constructive information and the fact
that reasoning and synthesis are done in two separate languages.

In [PC01], Crossley and Poernomo defined a specialized notion of realizabil-
ity to hold between SML programs and many-sorted formulae. This book will
use and extend this notion of realizability.
Example 1.5. According to this definition of realizability, the SML program

fn x : int => 2 ∗ x
is a realizer of

∀x : int • ∃y : int • y = 2 ∗ x

This program is more optimal than the corresponding proof-term in Martin–
Löf type theory (it is smaller), and contains no redundant non-constructive
information (no information corresponding to proofs of Harrop formulae).
Example 1.6. Under this notion of realizability, a SML program p is a realizer
of

∃x : int • Prime(x)

with Prime(x) a Harrop formula, provided that p can be executed to give an
answer a that can be represented as a witness a with A[a/x] being provable.

The relation between constructive proofs and extracted programs obey the
following diagram (based on an observation by Anderson [And93, p. 36] and
modified by Iman Poernomo and John Crossley in [PC01]). Let L denote a
constructive type theory, C a target programming language and extract be the
extraction map between the two languages.

L : t1
P normalizes to � tP2

C : p1, satisfying P

extract

� evaluates to� p2 satisfying P

extract

�

where satisfaction of a specification P is defined by the specialized notion of
realizability.

The advantage of a SOA approach over a näıve approach is twofold: pro-
grams are optimized for execution and readability, and are implementable in
a commonly used functional programming language. Consequently these meth-
ods produce optimized programs that are easier to understand and use by pro-
grammers who have no knowledge of constructive type theory but who require
programs that are correct for a given specification.

While the basic idea is the same between authors, the target programming
language, and the application and definition of extraction and specialized re-
alizability differ between authors. Nordström and Petersson were among the
first authors to advocate a separation between constructive type theory and
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programs for the purposes of optimal extraction [NP83]. In [Sch82, Sch85],
Schwichtenberg defines an optimizing extraction map from intuitionistic proofs
to functions in a simply typed lambda calculus which can then be transformed
into Scheme programs. Sasaki [Sas86] provides an optimizing method of ex-
traction for the Nuprl system (based on Martin–Löf predicative type theory),
mapping intuitionistic proofs to programs in the subset of Nuprl corresponding
to the simply typed lambda calculus. A different optimizing extraction map is
given by Paulin–Mohring in [PM89] for transforming proofs of the Calculus of
Constructions into terms of Girard’s Fω (a superset of the simply typed lambda
calculus [Gir72]). In [PMW93], Paulin-Mohring and Werner showed how this
method can be adapted to synthesize programs in ML.

The work at Monash University by John Crossley and Iman Poernomo has
defined an SOA approach that uses a constructive type theory for many-sorted
logic with extraction into SML [PC01, CP01, JPBC03]. In Chapter 2 of Part II,
we will provide the details of this approach. In later chapters, we will gener-
alize and adapt this SOA approach to different logics and other programming
languages. So, when we claim to adapt the proofs-as-programs paradigm, we
mean that we adapt this SOA approach. However, we argue that this approach
is typical and our results therefore give a fair generalization of the other SOA
methods mentioned here.

1.1.4 Related methods

There are several important related deductive program synthesis methods based
in intuitionistic logic. Similar to SOA proofs-as-programs, these methods dif-
ferentiate between programs and proofs, and synthesize programs by ignoring
redundant, non-constructive proof information.

Hayashi and Nakano’s system PX — described in [HN88, Hay90] — is based
on Feferman’s theory of functions and classes [Fef79]. The PX system can be
used as a constructive logic, and is equipped with an optimizing extraction map
from proofs of specifications to untyped LISP programs. The system itself is
untyped, but can be used as a foundational framework for constructive type
theories.

The deductive synthesis methods developed by Manna and Waldinger are
based in constructive logic — see, e.g., [MW91]. These methods use a special
tableaux style presentation to develop proofs and optimized programs in tan-
dem. This is in contrast to the SOA approaches, where the program is extracted
after a proof is complete. The method uses the same notion of a program’s cor-
rectness with respect to a formula as a specialized notion of realizability. This
work was implemented at NASA with the Amphion system. The work of Bundy
in proof-plans [KBB93] is a development of this work, offering a similar means
of program synthesis with some improvements to the tableaux style reasoning.

In a wider context, there are many logic-based approaches to program syn-
thesis. The proofs-as-programs approaches we have described are all interactive
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(semi-automated), by virtue of the fact that they involve proof goals in predicate
logic (which can never be fully automatically derived, by Gödel’s incompleteness
theorem).

However, automated deductive synthesis is what occurs in high-level logic
programming languages such as Prolog and automatic theorem provers such as
the Boyer–Moore prover [BM79] or OTTER [McC92].

Tyugu devised an automatic approach to synthesis based in constructive
logic, implemented in the NUTS system [Tyu88, MT98]. This uses a type the-
ory corresponding to propositional intuitionistic logic — essentially the simply
typed lambda calculus with disjoint unions. It has the advantage that, under
certain constraints, proofs are decidable, and so the inhabitation of a type is
decidable. The usefulness of the type theory comes from the idea that simple
types can correspond to a more detailed specification of term (program) behav-
ior (such as the primality of an integer), in contrast to the usual typing by a
sort name (such as being an integer). Because of the decidability of the subset
of propositional proofs considered, this kind of program synthesis is automatic.

Finally, we note that deductive synthesis contrasts with two alternative
approaches to logic-based synthesis: the transformational and inductive. In
transformational synthesis, a program is derived stepwise from a specifica-
tion by means of transformations or refinements. Refinement calculi (see, e.g.,
[Dij76, MV93, Mor94, Bac80]) achieve transformational synthesis through lan-
guages that mix non-executable specifications and programs. Related tech-
niques (see, e.g., [HHS85]) have been employed to obtain structured pro-
grams from both model-oriented specifications (such as B specifications [Abr96,
pp. 501–550]), and from structured algebraic specifications (such as OBJ
[FD88, GWM+00] or CASL [CoF01]). In inductive synthesis, a program is built
on the basis of a declaration of input-output requirements or examples of input-
output pairs. Examples of methods that fall into this category include inductive
logic programming [Plo71, Mug92] and neural and belief networks [RN95, pp.
563–597].

1.2 Generalizing constructive synthesis

We have surveyed proofs-as-programs approaches to the synthesis of functional
programs from constructive proofs.

An interesting and largely unexplored area of research concerns how proofs-
as-programs can be adapted to different contexts (programming paradigms and
logics other than functional programming and constructive intuitionistic logic).

1.2.1 Research on adaptation

Throughout the 1990s, research on adapting proofs-as-programs largely focused
on two areas: synthesis of functional programs from classical proofs and syn-
thesis of functional languages with catch-and-throw exception mechanisms.
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Schwichtenberg and Berger developed a method for synthesis of functional
Scheme programs from classical proofs [BS93, BS95b, BS95a, Sch99b]. Their
method is an extension of a SOA method for extracting programs from in-
tuitionistic proofs about functionals. This work involves a translation of the
classical derivation to an intuitionistic proof, followed by extraction of an opti-
mized program that can be executed in Scheme. A comparable approach is that
of Murthy [Mur91], which uses a less elegant refinement translation and yields
less optimal programs.

These methods develop functional programs by adapting SOA methods.
Also, some interesting work has been done in adapting näıve proofs-as-programs
to classical logic. These results show that certain logics, given a type theoretic
presentation, correspond directly a kind of functional programming language
with catch-and-throw control mechanisms. Classical logic is used to achieve
this in [Gri90, Par93].

Interesting work was done in [Nak94], where Nakano defines a new logic with
connectives that enables explicit reasoning about catch-and-throw mechanisms.
This work is similar in philosophy to this monograph — defining new logics
for new programming paradigms, with an adaptation of the Curry–Howard
isomorphism and proofs-as-programs for program extraction from proofs. In
related work, Sato examines the relation of catch-and-throw-mechanisms to
classical and intuitionistic deduction in [Sat97].

1.2.2 Generalizing constructive synthesis

Little work has been done on defining what should constitute an adaptation to
general cases of logics and programming languages. An important part of our
project is therefore concerned with identifying a framework that generalizes a
specific constructive program synthesis approach over a range of possible logics
and programming language paradigms.

Our framework, which we call the Curry–Howard protocol, generalizes SOA
approaches to proofs-as-programs. It assumes a Curry–Howard style isomor-
phism to hold between a given logic and type theory. Following an important
property of SOA approaches, our protocol requires an optimization and extrac-
tion strategy from proofs to programs. Programs are elements of a separate
programming language, not part of the logical type theory.

The rest of this monograph will then concern applying this protocol to
adapt proofs-as-programs for imperative program synthesis, and to reasoning
with structured algebraic specifications and structured program synthesis.

1.3 Imperative programs

Imperative programs produce results by manipulating values stored in a com-
puter’s memory: producing side-effects. This is done by executing sequences of
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individual statements that are determined by iterative and conditional com-
mands. These programs are in contrast to pure functional programs, which do
not involve changes of state.

For both historical and practical reasons, imperative programming domi-
nates industry development. It is rare to see purely functional programs em-
ployed in industrial applications.

Also, many functional languages, such as LISP and SML, are not pure and
offer imperative constructs. In many imperative and object-oriented languages
currently used in industry, such as C++, Java, C# or Visual Basic, it is possi-
ble to program in the functional style with simulated higher-order anonymous
functions. These languages sometimes utilize side-effect-free functionals to ac-
cess data and provide views of state [Mey00].

Pure functional and imperative programming styles can be, and often are,
mixed. It is therefore of value to provide a formal means for reasoning about,
and synthesizing, correct programs that involve both imperative and pure func-
tional aspects. Hoare logic is an established approach to reasoning about, and
synthesizing, imperative programs. By considering a constructive variant we
can use proofs-as-programs techniques to synthesize imperative SML programs
that involve complicated pure, functional return values. This will form one of
the main concerns of this book: proofs-as-imperative-programs.

1.3.1 Hoare logic

One of the most important ideas in formal software development is the Hoare
calculus, first described in [Hoa69]. This is a deduction system for simulta-
neously constructing and reasoning about imperative programs, based on a
semantics for programs due to Floyd [Flo67].

The idea is to specify a program in terms of its side-effects via pre- and
post-conditions. Both conditions are usually formulae with special variables
that denote the state of a computer’s memory. The post-condition explains
how the program execution should affect the state of memory, assuming the
pre-condition was true prior to execution.

The Hoare calculus involves rules that show how to obtain imperative pro-
grams that satisfy such specifications. An example of a theorem is

� {Even(g)}g :=!g + 1{Odd(g)}
The middle term is a SML program, while the left-hand bracketed term is a
pre-condition and the right-hand term is a post-condition. In this example,
the theorem tells us that, assuming that the state g is an even number, after
executing the addition program, we have an odd number.

Hoare logic has had successful application in the development of imperative
programs. Hoare logic has been extended to the specification and construction
of nondeterministic, parallel and distributed programs [Hoa85, Har84, HHH+87]
and object-oriented programs [AL97]. The state-based specification of an im-
perative program via pre- and post-conditions forms the basis of model-based
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specification languages such as the B method [Abr96]. The object constraint
language (OCL) part of UML [WK98] is based on the notion of pre- and post-
condition specifications. These specifications also form the basis of the real-time
assertion checking system of the Eiffel programming language [Mey97].

We will limit ourselves to a version of the basic Hoare logic for imperative
SML programs with while loops.

1.3.2 Synthesis of imperative programs with functional return
values

The presence of side-effects is what distinguishes the imperative paradigm from
the functional one. However, side-effect-free functions are also important in
imperative programs because they enable access to data, obtaining views of
state and producing return values. For instance, the SML program

s := 10; !s ∗ 2

involves a side-effect producing assignment statement, s := 10, followed by a
side-effect-free term !s ∗ 2, which will evaluate to a return value.

Hoare logic is good for reasoning about and developing side-effect producing
aspects of imperative programs. However, there are some inadequacies in the
traditional means of using logic for developing side-effect-free aspects of impera-
tive programs. Commonly, Hoare logic relies on the user directly constructing a
required side-effect-free function along with a proof of its required property. Re-
turn values and state views are specified by a post-condition that associates the
return value itself with a special designated variable (see, for instance, [Abr96,
pp. 240–241]).
Example 1.7. We can associate the variable return with a required return value.
When the variable is mentioned in the pre- and post-condition of a Hoare triple,
it denotes the return value of a program’s side-effect is equivalent to the program
of the triple. So, the triple

{}s := 10{return = s ∗ 2 ∧ Even(return)}

describes a SML program s := 10; !s ∗ 2 which returns an even number.
The problem with this approach is that the user is required to explicitly

define a side-effect-free function while proving properties about it.
As we have mentioned, in many imperative languages, return values can

potentially take the form of complex functional programs that are difficult to
synthesize using the usual approach in Hoare logic. Proofs-as-programs has had
success in the synthesis of such programs. Constructive methods hide imple-
mentation details from the designer, permitting a functional program to be
developed solely through reasoning about domain knowledge.

We would prefer to be able to hide the details about the definition of a
return value so the designer need not think about the way the return value
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or view of state is to be coded, and focus instead on manipulation of domain
knowledge. It is therefore of interest to see how to adapt proofs-as-programs
to the Hoare logic, and to combine imperative construction and the functional
synthesis of return values.

In constructive program synthesis, a proof of a statement can be used to
synthesize a realizer of the statement. The realizer is a functional program that
satisfies the statement as a specification. For example, an existential statement

∃x : int • Even(x)

can be used to synthesize a functional program that returns a witness value p
such that Even(p) is provable. Because the realizer is synthesized from a proof,
the details about its definition are hidden from the prover. The prover need
only be concerned with using logic to reason about a problem, not with the
definition of a program.

We will adapt this property to the specification of return values.
Example 1.8. For instance, given a constructive proof of the theorem

{}s := 10{∃x : int • Even(x)}

we want to synthesize a program of the form

s := 10; f

with a side-effect-free function f that realizes the existential post-condition

∃x : int • Even(x)

with a value that is a witness for the x. An example of such a realizing return
value function might be !s ∗ 2.

In our methods the user does not need to manually code the return value,
but instead the Hoare logic is used to prove the theorem from which the return
value is extracted, and incorporated with the side-effect producing part of the
theorem to give a final program.

The adaptation is not trivial, as, unlike functional program synthesis, our
specifications involve initial and final values of state and our extracted side-
effect-free functions can involve state references.

1.3.3 Alternative approaches to synthesis

We identify four distinct attempts at using proofs-as-programs notions in im-
perative program synthesis.

The first three involved encodings within ordinary constructive logic.
Filliâtre developed a denotational semantics of imperative programs within

Coq, providing a means of transforming constructive content of proofs into
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monadic representations of imperative programs, and then finally into exe-
cutable imperative programs [Fil99, Fil03].

A similar approach was taken separately by Manna and Waldinger for the
synthesis of imperative LISP code [MW87], by encoding a semantics of imper-
ative programs within their deductive synthesis system [MW91].

Stark and Ireland use a straightforward metalogical encoding of a Hoare-like
logic within constructive logic that then facilitates interactive theorem proving,
using tools based in constructive type theory [SI98a, SI98b].

Finally, Bellot developed a logic based on Girard’s linear logic, for defining
requirements of imperative programs [BR90, BCR+99]. This work might be
characterized as an adaptation of näıve proofs-as-programs because it defines a
logical type theory that can also be understood as an imperative programming
language, in the same way that näıve methods view constructive type theory
as a functional programming language. The novelty of his work is that the
logic, represented as a type theory, corresponds to a programming language
with imperative qualities. In particular the normalization of a proof — and
the corresponding operational semantics of the proof-term — is ordered and
sequential in an imperative sense. A new form of realizability is defined to hold
between specifications and imperative programs, corresponding to inhabitability
of types in the type theory. A problem with this logic and programming language
is that they are nonstandard and difficult to understand and use for a new user.

None of these methods can be said to adapt state-of-the-art proofs-as-
programs techniques. In particular our work is unique amongst these ap-
proaches, such that we use Hoare logic to develop side-effects of imperative
programs and constructive methods to develop side-effect-free return values.

Popular alternatives to the Hoare logic for imperative program synthesis
are refinement calculi. Refinement calculi achieve synthesis through languages
that mix non-executable specifications and programs — see, e.g., [Dij76, MV93,
Mor94, Bac80]. These calculi provide rules for refining non-executable speci-
fications into executable terms that satisfy the given specification. Repeated
recursive application of rules over a term with non-executable subterms will
eventually yield an executable term. Related techniques (see, e.g., [HHS85])
have been employed to obtain structured programs from both model-oriented
specifications (such as specifications in the B language [Abr96, pp. 501–550]).
Refinement calculi have the advantage over Hoare logic of being scalable, and
of appearing more like programming languages.

However, the problem of specifying and synthesizing return values is usually
dealt with in a similar way to that of the Hoare logic, using specially designated
return value symbols in specifications. The developer is required to explicitly
define a side-effect-free function during the refinement process. It is an open
question as to whether proofs-as-programs ideas could be incorporated into
refinement calculi for return value synthesis.
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1.4 Structured specifications and programs

An important research area in software engineering is that of scalable methods
for modular program specification and correct development. The need for prov-
ably correct, hierarchical designs and implementations of programs was voiced
in the program of the 1968 NATO conference on Software Engineering [NR68,
pp. 45–55, 181–186]. Since that time, various formal abstractions have been
studied to provide modular programming and specification languages, methods
of proving correctness of modular programs against their specifications, and
methods for the synthesis of structured programs from specifications. A popu-
lar example of such a formal abstraction is structured algebraic specifications
— see, e.g., [Wir90].

Structured algebraic specifications provide a data-centric view of a software
system. They can be considered as a hierarchical means of defining abstract
data types, enabling us to specify systematically the required functionality in
terms of an algebraic theory. A basic theory consists of a signature — type,
function, and predicate symbols — together with axioms that define the re-
quired behavior of the algebraic entities represented by the signature. A new
theory can be built from an existing theory via structuring operators: for in-
stance, by renaming its types and constants, by abstraction (forgetting some
types and constants and perhaps renaming the rest), combining two theories, or
parametrizing and instantiating. These theory-building operations allow large
theories to be built in a flexible and well-structured fashion. Structuring op-
erators facilitate specification according to compositional, divide-and-conquer
principles.

There is a variety of specification languages available. The earliest specifi-
cation language was Clear developed by Burstall and Goguen [BG77, BG80].
Significant and well-developed work is the provided by OBJ2 and OBJ3 sys-
tems [FGJM85, GWM+00], which are based on order-sorted algebras. Sanella,
Tarlecki and Wirsing developed ASL as a core language for developing specifi-
cations [Wir82, SW83, Wir86, ST88a].

Over the past few years, the CoFI group has defined a standard for alge-
braic specification, called CASL [CoF01], which incorporates ideas from pre-
vious work. CASL specifications are based on many-sorted, partial, first-order
algebras. Many of the ideas from ASL and other specification languages have
been incorporated into the CASL standard. Our work shall be concerned with
CASL. However, because CASL resembles other systems, many of our results
could easily be adapted to other systems.

We will be interested in reasoning about and refining and extending struc-
tured specifications. We will use program extraction to aid refinement and ex-
tension using proofs about specifications.
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1.4.1 Reasoning about specifications

Reasoning about algebraic specifications is important for the purposes of under-
standing the consequences of a specification and ensuring that a specification
meets the requirements of the domain being modelled.

It is possible to reason about a structured specification simply by using
many-sorted logic. This is true because structured specifications can be col-
lapsed into an equivalent single set of axioms with a signature [Wir91].1

To prove properties about the specification, we need only equip ordinary
logic with the axioms, and reason using the signature. However, this has the
disadvantage of not being compositional. A compositional proof system con-
structs a proof about a structured specification in a modular fashion, using
knowledge about sub-specifications to derive knowledge about the composed
specification. This promotes the desirable features of a divide-and-conquer ap-
proach and proof reuse.

Our project is concerned with extensions to the compositional proof systems
for structured specifications defined by Martin Wirsing in [Wir91]. Similar sys-
tems have been investigated in [FC92, BCH99, HWB97]. The original idea has
roots in work done on modular reasoning by Sannella [SB83]. This used an
extension to the Edinburgh LCF theorem-proving system that permitted the
construction of Clear-like specifications and provided inference rules and strate-
gies for compositional proofs about structured theories.

In this approach, proofs are conducted in a fashion that mirrors the struc-
turing of specifications. The user derives statements of the form

Sp � P

where Sp is a structured specification, and P is a known truth about the spec-
ification. The system is compositional in that it enables the simultaneous com-
position of old specifications to form new specifications and the derivation of
new truths from known truths.

For example, the translation operation (ρ • Sp) permits us to rename the
signature and axioms of a specification Sp using a signature morphism ρ to
give a new specification with renamed symbols. If we consider a specification as
specifying component requirements, the renamed specification can be consid-
ered as a means of wrapping the component requirements with a new interface.
In Wirsing’s system, a renaming rule permits the formation of a renamed spec-
ification:

Sp � ρ−1(P )
(ρ • Sp) � P

Besides constructing the new specification, the rule shows how to derive a truth
P about the renamed specification from the previously known truth ρ−1(P ). In
the sense that the logic enables two things to be done — the construction of
1 This follows from the normal form theorem which states that a specification is

equivalent to a normal, non-structured, specification of an algebra.
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new entities from old and the reasoning about the result — it resembles Hoare
logic’s treatment of programs and theorems.

The overall proof system is parametrized with respect to a first-order logic.
Usually this is classical logic, but, in this book, we replace it with intuitionistic
logic, to obtain a constructive system for compositional reasoning about specifi-
cations. Our motivation for this is to adapt the Curry–Howard isomorphism and
state-of-the-art proofs-as-programs results in order to extract provably correct
functions from proofs about specifications: structured proofs-as-programs.

1.4.2 Refinement of specifications

One of the main aims of algebraic specification is to provide a formal basis to
support the systematic development of correct programs from specifications by
means of verified refinement steps. Refinement is the process of transforming
abstract specifications into more concrete ones. If the concrete specification is
executable, then we consider it as a program that implements the specification.

Sannella and Tarlecki argue that refinement should proceed in a stepwise
fashion, from abstraction to implementation, gradually enriching the original
specification with more detail and incorporating design, architecture, and im-
plementation decisions [ST88b, ST97, SST92]. Such decisions include choosing
between alternative behaviors of functions, data representation, and structure.
Stepwise refinement is important for large specifications, because it permits the
designer to decide upon the implementation of different aspects of a specifica-
tion at separate points in the development process.

1.4.3 Proofs-as-programs for function extraction and refinement

A proof system for reasoning about ASL specifications was developed by Wirs-
ing, Peterreins and Crossley in [WCP98, Pet96]. That work developed the ideas
of Wirsing’s calculus of [Wir91], but was based in natural deduction, over which
Curry–Howard terms could be provided to encode proofs. The calculus used
classical deduction.

In this book, we will develop an intuitionistic version of that natural deduc-
tion calculus, using the CASL standard for expressing specifications. Curry–
Howard terms are defined in a similar fashion to the classical calculus. How-
ever, because we use constructive deduction, we can adapt proofs-as-programs
to enable the extraction of correct functions from proofs about specifications.
Example 1.9. For instance, we could derive a proof of the theorem

Int � ∀x : int • ∃x : int • y > x ∧ Prime(y)

where Int is a specification of the natural numbers, with the predicates >
and Prime given appropriate axioms. Using our methods, we could extract a
realizing lambda term t such that
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Int � ∀x : int • t > x ∧ Prime(t x)

is true. In this way, the term t is a function that satisfies the original theorem
as a specification.

By virtue of our methods, these programs can then be consistently added
back to a specification for correct extension. For example, the term t can be
associated with a function f , with the equational axiom {f = t} consistently
extending the specification Int. This provides a formal means of designing
structured specifications by consistent extension. This is another important
result: structured proofs-as-programs.

Finally, we show how our techniques can be used to define processes for
the synthesis of structured programs and the refinement for specifications. By
deriving constructive proofs of the axioms for a function, we can extract an
executable definition of the function. By repeating this process, we can achieve
a stepwise development of full executable structured programs from a structured
specification.

We are not the first to propose developing correct SML programs from struc-
tured specifications. Sannella and Tarlecki proposed a stepwise development
process and designed Extended ML (see [KST97]) as a language for expressing
specifications and SML programs by one single syntax. However, those tech-
niques did not involve program extraction techniques.

Also, the technique used by Smith in the SpecWare system bears some sim-
ilarity to ours [Smi93]. There he uses similar rule-based techniques to con-
struct specification morphisms. Our technique differs from Smith’s in both the
specification-building operations and in the approach to program synthesis.
Even though he uses program synthesis techniques, he does not involve con-
structive proofs-as-programs methods.

1.5 Overview

This book deals with the following concepts.

1.5.1 The Curry–Howard protocol

Some work has been done in providing analogous results to the Curry–Howard
isomorphism and proofs-as-programs for other logical systems and programming
languages, often in the domain of classical logic. We contribute a novel result
to the field by identifying a general framework that generalizes the form such
analogies should take over arbitrary logical calculi and programming languages.
The Curry–Howard protocol provides the framework. It is useful because it can
then be used as a guide for adapting proofs-as-programs to new contexts, such
as imperative program synthesis.
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1.5.2 Proofs-as-imperative-programs

For the most part, even when tackling logics other than intuitionistic logic,
proofs-as-programs research has been concerned with the synthesis of side-
effect-free programs. Little work has been done in adapting proofs-as-programs
for imperative program synthesis.

Our method involves the synthesis of imperative programs from proofs of
specifications. Specifications concern side-effects and side-effect-free return val-
ues at the same time, but with different treatments. Specifications of side-effects
are given as assertions about initial and final states as in standard Hoare logic.
Specifications of side-effect-free aspects are given by considering assertions as
constructive specifications, with constructive realizers as return values. By con-
forming to the Curry–Howard protocol, we adapt proofs-as-programs (defining
an extraction map from proofs in the Hoare logic) to imperative programs of
SML. The resulting programs satisfy specifications of both side-effects and side-
effect-free return values.

Also, by defining a constructive version of Hoare logic including proof-terms,
we provide a type-theoretic description of Hoare logic that is useful for theorem-
proving implementations.

1.5.3 Structured proofs-as-programs and structured program
synthesis

We present a method, using a version of the logical system of [WCP98, Pet96],
for obtaining SML programs from specifications written in the algebraic speci-
fication language CASL. These programs are provably correct.

The logical calculus adds structural rules corresponding to the standard
ways of creating structured specifications as presented in CASL: translating,
hiding signatures, taking unions of specifications and building structured and
parametrized specifications.

We then adapt proofs-as-programs to this logic, applying the Curry–Howard
protocol to extract programs from proofs in our logic. We show that these tech-
niques lead to consistent extensions of specifications, and the stepwise develop-
ment of structured code.

1.5.4 Book organization

The monograph is organized into parts, corresponding to the main contributions
above.

• Part I, Chapter 1 is this introductory chapter.
• Part II introduces the Curry–Howard protocol:

— Chapter 2 provides an example of SOA proofs-as-programs for the syn-
thesis of functional programs.

— In Chapter 3, we define the Curry–Howard protocol. We illustrate how
it generalizes our SOA approach.
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• Part III defines a method for imperative program synthesis by the applica-
tion of the Curry–Howard protocol.
— Chapter 4 presents our logic for reasoning about side-effect relations.
— Chapter 5 provides some necessary properties of the logic. We show

soundness and completeness and define the proof-theory necessary for
applications of the protocol. We present a logical type theory, and show
an analogous result to the Curry–Howard isomorphism.

— Chapter 6 describes how the Curry–Howard protocol is applied to achieve
the synthesis of imperative programs from proofs in our logic.

• Part IV develops a method for reasoning about structured specifications,
the synthesis of functions by application of the Curry–Howard protocol and
refinement of specifications.
— Chapter 7 presents the logic for reasoning about structured specifica-

tions.
— Chapter 8 provides proof-theory necessary for the application of the

protocol. We present a logical type theory for our logic, and show an
analogous result to the Curry–Howard isomorphism. We establish the
Church–Rosser and strong normalization theorems.

— Chapter 9 describes how the Curry–Howard protocol is applied to achieve
the synthesis of correct functions from proofs of our logic and how spec-
ifications can be consistently extended by these functions.

— Chapter 10 extends our results to generic, parametrized specifications as
they are treated in the algebraic specification language CASL [CoF01].

— Chapter 11 provides a methodology for using our results for the refine-
ment of structured specifications into structured executable code.

• Part V, Chapter 12, offers concluding remarks and suggests directions for
future research.



Part II

Generalizing Proofs-as-Programs



2

Functional Program Synthesis

We are now going to show how to synthesize SML functional programs from con-
structive proofs. The approach is a state-of-the-art (SOA) proofs-as-programs
approach in the sense described in the previous chapter.

In order to do this we first define a constructive logic where formulae assert
truths about a problem domain and specify required SML programs as modified
realizers, following [Kre59, BS95a, Dil80]. We first give a simple indication of
how we are going to do this. We shall use Skolem functions for the Skolem form
of a formula.

Example 2.1. For example, the formula A = ∀x : int • ∃y : int • x + 10 = y
asserts that, for every integer x there is an integer y equal to x plus 10.

The Skolem form of A is written as

Sk(A) = ∀x : int • x + 10 = (fA x)

Any function that can be substituted for fA is called a modified realizer of A.
So, besides being a statement about the integers, the formula A can also be

considered as a specification of a modified realizer, a functional program a that
evaluates to the Skolem function fA in a proof

�Int Sk(∀x : int • ∃y : int • x + 10 = y)[a/fA]

The SML program
fn x : int => x + 10

satisfies this specification, because, given an appropriate axiomatization of SML
programs it is possible to derive

�Int ∀x : int • x + 10 = (fn x : int => x + 10) x

The major innovation of this presentation of proofs-as-programs can be
stated as follows. In contrast to näıve approaches to proofs-as-programs, we
differentiate between proofs and programs, using different languages for each.
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Proofs are represented in a logical type theory: a constructive type theory whose
type inference rules reflect the rules of the constructive logic according to the
the Curry–Howard isomorphism [Cur34, How80]. Programs are from a differ-
ent language: the simply typed lambda terms with disjoint unions and product
types, written in a subset of SML. The two languages are related via a common
signature so program values can be represented as terms of the logic and vice
versa.

Synthesis of correct programs from proofs is done via an extraction map
between proofs in the type theory and programs of SML, producing modified
realizers for proved specifications.

In the next chapter we provide a framework for generalizing the approach
given here to other programming paradigms and logics. We claim that the
method of this chapter is essentially a simplification of alternative SOA ap-
proaches that often involve additional features that are not relevant to our
purposes here. For instance, unlike some of the SOA approaches mentioned in
the previous chapter, we do not use full higher-order logic. We could, however,
easily extend our work to full higher-order logic. Consequently, we claim that
our framework, as a generalization of this chapter, is also an adequate general-
ization of all SOA approaches.

This chapter proceeds as follows:

• Section 2.1 discusses abstract data types, signatures and well-formed many-
sorted formulae to be used in our logic.

• Section 2.2 provides a summary of many-sorted intuitionistic logic.
• In Section 2.3 we describe the logical type theory for representing proofs in

our logic, according to the principles of the Curry–Howard isomorphism.
• Section 2.4 discusses the subset of SML that we use to extract programs.
• Section 2.5 presents our notion of realizability and describes the extraction

process.
• We illustrate our methods with a password checking system example in

Section 2.6.
• Section 2.7 provides a discussion of our results.

Notation 2.1 (List notation). We will use the following notation throughout the
text.

Lists of elements are represented as follows: [a1; . . . ; an]. We will use a bar
above a symbol to denote a list — e.g., we can define ā to be a list [a1; . . . ; an].

Concatenation of lists is given by the :: operator. For example, if ā is
[a1; . . . ; an] and b̄ is [b1; . . . ; bm], then ā :: b̄ is [a1; . . . ; an; b1; . . . ; bm].
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2.1 Abstract data types

We shall be reasoning with a many-sorted predicate logic, parametrized with
respect to an assumed specification of abstract data types. We need the concept
of signatures to define this specification.

2.1.1 Signatures and lambda terms

Signatures define sorts and function and predicate symbols.
We use the standard definition of first-order signatures (we use that given in

[CoF01, p. 3]) extended to include sorts closed under functional, disjoint union
and product sorts and also a unit (single element) sort.

Definition 2.1.1 (Many-sorted signature with total functions). A
many-sorted signature Σ = 〈S, TF, P 〉 consists of:

• A set, S, of sorts. Sorts are generated from a set of basic sorts, B(S) accord-
ing to the following inductive definition. First, B(S) ⊆ S. Also, if s1 and s2
are in S, then so are
— the function sort (s1 → s2)
— the product sort (s1 ∗ s2)
— the disjoint union (s1|s2)
We assume that B(S) includes a special sort, called Unit.

• Sets TFw,s of total function symbols, for each function profile (w, s). A
function profile (w, s) is a pair of words, consisting of a sequence of argument
sorts w ∈ S∗ and a result sort s ∈ S. Constants are treated as functions
with no arguments. The length of w is called the arity of function symbols
in TFw,s. We assume that TF∅,Unit contains a unit symbol, written () (this
denotes the single inhabitant of the sort Unit ∈ B(S)).

• Sets Pw of predicate symbols, for each predicate profile w. A predicate profile
consists of a sequence of argument sorts w ∈ S∗. The length of w is called
the arity of predicate symbols in Pw. For each basic sort s ∈ B(S), there is
a distinguished equality predicate =s∈ Pss.

Constants and functions are also referred to as operations. The symbols
that identify operations and predicates may be overloaded, occurring in more
than one of the above sets. Whenever there is ambiguity in sentences, function
symbols f and predicate symbols P should be qualified by profiles, written
fw,s and pw respectively. When no ambiguity is present, these profiles can be
omitted.

We define the terms for a signature Σ = 〈S, TF, P 〉, Term(Σ), as in Fig. 2.1.
This includes the usual definition of terms for a signature freely generated over
a set of term variables V ar. However, we have extended the definition to include
a lambda calculus (with lambda terms written in an SML style syntax). Note
that the variables V ar are assumed to be disjoint from the constants in TF .
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Notation 2.2. In later sections, we will require another lambda calculus for
representing proofs, distinct from the lambda calculus for a signature. To dis-
tinguish between the terms of the two calculi, we will refer to the terms for
a signature as individual terms. However, when there is no confusion, we will
simply refer to them as terms.

a, b, c ::= elements of Term(Σ)
f(a1, . . . , an) f ∈ TFw,s, w of arity n and

(a1, . . . , an) is a (possibly empty)
list of elements of Term(Σ)

x a variable x ∈ V ar
Inl (a) in left
Inr (a) in right
match a with

Inl (x) => b
| Inr (y) => c

match case, x, y ∈ V ar

fn x : s => b lambda abstraction,
s in S

(a b) application
(a, b) pair
fst (a) first projection
snd (a) second projection

Fig. 2.1. Syntax terms of Term(Σ).

We have the usual notions of free and bound variables of the lambda terms
of Term(Σ).

Definition 2.1.2 (Free and bound variables of Term(Σ)). Let x be any
variable of V ar, and t a term of Term(Σ).

Then, x is bound in t if there is a subterm of t of the form

fn x : s => b

or
match a with Inl (x) => b | Inr (y) =>c

or
match a with Inl (y) => b | Inr (x) =>c

If x is not bound in t, then x is free in t. We write BV (t) for the set of all
bound variables of t, and FV (t) for the set of all free variables of t. A program
with no free variables is called closed.

We write Closed(Term(Σ)) for the set of closed terms from Term(Σ).
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Terms of a signature Σ are associated with sorts according to the sort infer-
ence rules provided in Fig. 2.2. These are the standard rules for inferring sorts
of the lambda calculus. They involve a sorting relation (:) between terms and
sorts. An inference takes the form

Γ �Σ a : s (2.1)

where Γ is a context, consisting of variables associated with sorts, of the form
{x1 : s1, . . . , xn : sn}. The inference’s intended meaning is that the term a
has the sort s, when its free variables x1, . . . , xn denote possible terms of sorts
s1, . . . , sn. If an inference of the form (2.1) can be made for a term a and sort
s, we say that a is well-sorted with sort s for context Γ . If the context Γ can be
determined with no ambiguity from examining a, we simply say a is well-sorted
with sort s.

Γ, x : s �Σ x : s
(Ass)

f ∈ TF(s1...sn),s Γ1 � a1 : s1 . . . Γn � an : sn

Γ, Γ1, . . . , Γn �Σ f(a1, . . . , an) : s
(Fn)

Γ �Σ a : s1

Γ �Σ Inl (a) : (s1|s2)
(Union1)

Γ �Σ a : s2

Γ �Σ Inr (a) : (s1|s2)
(Union2)

Γ1 �Σ a : s1 Γ2 �Σ b : s2

Γ1, Γ2 �Σ (a, b) : (s1 ∗ s2)
(Prod)

Γ �Σ a : (s1 ∗ s2)
Γ �Σ fst (a) : s1

(Proj1)
Γ �Σ a : (s1 ∗ s2)
Γ �Σ snd (a) : s2

(Proj2)

Γ, x : s1 �Σ a : s2

Γ �Σ fn x : s1 => a : s1 → s2
(Abs)

Γ1 �Σ a : s1 Γ2 �Σ b : (s1 → s2)
Γ1, Γ2 �Σ (b a) : s2

(App)

Γ1 �Σ a : (s1|s2) Γ2, x : s1 �Σ b : s Γ3, y : s2 �Σ c : s

Γ1, Γ2, Γ3 �Σ match a with Inl (x) => b | Inr (y) =>c : s
(Case)

Fig. 2.2. Sort inference rules for terms of Σ.

2.1.2 Formulae

Many-sorted formulae, WFF (Σ), for a signature Σ = 〈S, TF, P 〉 are con-
structed according to the following definition, given with respect to the de-
numerable set of term variables, V ar.
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Definition 2.1.3 (Well-formed formulae of a signature). Let Σ =
〈S, TF, P 〉 be a signature. The set of well-formed formulae for a signature,
WFF (Σ) is the least set containing

• every Q(t1, . . . , tn) where Q ∈ Ps1...sn
is a predicate symbol in Q and every

ti (i = 1, . . . , n) is a well-sorted lambda term of sort si,
• every formula (A ∧B) for A, B ∈WFF (Σ),
• every formula (A ∨B) for A, B ∈WFF (Σ),
• every formula (A⇒ B) for A, B ∈WFF (Σ),
• every formula ∀x : s • F where x ∈ V ars and F ∈WFF (Σ),
• every formula ∃x : s • F where x ∈ V ars and F ∈WFF (Σ),
• the formula ⊥.

We often write ¬A for (A⇒ ⊥).

Remark 2.1. Observe that our formulae WFF (Σ) can involve lambda terms
from Term(Σ).

2.1.3 Specification of abstract data types

The results of this chapter are parametrized with respect to a specification of
abstract data types,

ADT = 〈Σ, Ax〉,
where Σ is a signature and AX is a set of formulae from WFF (Σ).

Remark 2.2. Signatures are associated with a semantic structure through an
interpretation function, over which, formulae can be determined to be true or
false, in the usual sense. Thus our specification corresponds to a set of models
— structures that are constrained to satisfy the axioms. We do not provide the
details of semantics in this chapter as this is well-known and not essential to
understanding our program extraction method. Instead, we shall simply refer
informally to the “models of ADT.” In Part IV (Section 7.1 of Chapter 7),
a more general treatment of signatures and structures will be given that will
describe the semantics for specifications such as ADT.

Remark 2.3. As we shall see in Section 2.4, in order to obtain correct programs
from proofs, we assume that the signature and axioms correspond to a SML
library, which must be loaded before executing our synthesized programs, of
given functions that satisfy the specification ADT.

2.2 Intuitionistic logic

We now introduce our many-sorted intuitionistic logic, in order to reason about
ADT. The calculus, Int, is given in a natural deduction presentation. The in-
ference rules of the calculus may be divided into basic rules and axioms and
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schemata. The basic rules are the standard rules of intuitionistic logic for intro-
ducing and eliminating the connectives and quantifiers of many-sorted formu-
lae. Axioms and schemata are used to assert extra-logical properties of ADT in
proofs.

2.2.1 Judgements

We deal with judgements which we write in sequent form as

Γ � A

where A is a formula and the context, Γ , is a set of assumption formulae. The
intended meaning of the judgement is that assuming Γ are true then A is also
true.

2.2.2 Basic rules

The basic, core rules of the deductive system are presented in Fig. 2.3.
Remark 2.4 (Proof-tree notation). The sequent format presentation of proofs
is equivalent to a “tree” format presentation. The former preferred when space
needs to be conserved, the latter preferred when the steps of a deduction need to
be displayed clearly. A sequent �Int F is equivalent to the following tree format
presentation: ....

F

We use the usual natural deduction notation for discarding assumptions for
the (⇒-I), (∃-E) and (∨-E) rules. So, the (⇒-I) rule tells us that, given a proof
tree for B from A, we may discharge A to give a proof tree for (A⇒ B):

[A]....
B

(A⇒ B)
(⇒-I)

We denote discharging the assumption A by square brackets, [A]. Similar re-
marks hold for the (∃-E), (∨-I1) and (∨-E) rules.
Remark 2.5 (Substitution for individual variables). As usual A[t/x] denotes the
result of substituting t for all free occurrences of x in A subject to avoiding
clashes of variables, where t and x share the same sort.
Remark 2.6 (Eigenvariable restrictions). The conditions on the rules (∀-I) and
(∃-E) are the usual eigenvariable restrictions.

Motivation for the rules of intuitionistic logic is well known. We merely
provide motivation for several important rules as an illustration.
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Assume that x, y are arbitrary variables of sort s from signature Σ, and
that a and c are well-sorted terms of sort s.

A �Int A
(Ass-I)

∆, A �Int B

∆ �Int (A ⇒ B)
(⇒-I)

∆ �Int A ∆′ �Int (A ⇒ B)

∆, ∆′ �Int B
(⇒-E)

∆ �Int A

∆ �Int ∀x : s • A
(∀-I)

∆ �Int ∀x : s • A

∆ �Int A[c/x]
(∀-E)

provided x is free in A

∆ �Int P [a/y]
∆ �Int ∃y : s • P

(∃-I)
∆1 �Int ∃y : s • P ∆2, P [x/y] �Int C

∆1, ∆2 �Int C
(∃-E)

where x is not free in C

∆ �Int A ∆′ �Int B

∆, ∆′ �Int (A ∧ B)
(∧-I)

∆ �Int (A1 ∧ A2)
∆ �Int A1

(∧-E1)
∆ �Int (A1 ∧ A2)

∆ �Int A2
(∧-E2)

∆ �Int A1

∆ �Int (A1 ∨ A2)
(∨-I1)

∆ �Int A2

∆ �Int (A1 ∨ A2)
(∨-I2)

∆ �Int A ∨ B ∆1, A �Int C ∆2, B �Int C

∆1, ∆2, ∆ �Int C
(∨-E)

∆ �Int ⊥
∆ �Int A

(⊥-E)

provided A is Harrop

Fig. 2.3. The basic rules of many-sorted intuitionistic logic, Int.

Remark 2.7. Rules (∨-I1) and (∨-I2) are understood as follows.
Consider first the rule for ∨ introduction on the left:

Γ �Int A

Γ �Int (A ∨B)
(∨-I1)

This means that from a sequent Γ �Int A we may infer the sequent Γ �Int (A∨B).
Here we are weakening the conclusion to (A ∨B).
Example 2.2. The rule (∨-E) is most easily understood by its analogy to proof
by cases. If we have a proof of C from A and also a proof of C from B then we
get a proof of C from A ∨B.

Likewise, for the (∃-E) rule, if we have a proof of ∃x : s • A and a proof of
C from a proof of A with free variable y, then we can get a proof of C.

The (⊥-E) rule requires the following definition of Harrop formulae, which
will also be used to define realizability in Section 2.5.
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Definition 2.2.1 (Harrop). A formula F is a Harrop formula if it is

1. an atomic formula,
2. of the form (A ∧B) where A and B are Harrop formulae,
3. of the form (A⇒ B) where B (but not necessarily A) is a Harrop formula,

or
4. of the form (∀x : s •A) where A is a Harrop formula.

We write H(F ) if F is a Harrop formula, and ¬H(F ) if F is not a Harrop
formula.

Remark 2.8. Note that we restrict the premise formula of (⊥-E) to Harrop
formulae, for reasons to do with program extraction, described in Section 2.5
(Theorem 2.5.3 and Corollary 2.5.1).

However, this restriction does not affect the intuitionistic power of our cal-
culus, by the next lemma.

Lemma 2.2.1. The calculus Int with the rule
Γ �Int⊥
Γ �Int A

(⊥-E)

provided A is Harrop, can be extended conservatively to include the usual rule
(⊥-E∗) rule

Γ �Int⊥
Γ �Int A

(⊥-E∗)

for all formulae A.

Proof. We assume Γ �Int⊥. We then proceed by induction on the construction
of the formula A, to obtain the inference

Γ �Int⊥
Γ �Int A

(⊥-E∗)
(2.2)

from the basic rules of Int.
If A is atomic then A is Harrop and we achieve 2.2 by an application of

(⊥-E).
Suppose A is of the form (B∧C) then, by the induction hypothesis, we have

proofs
Γ �Int⊥....
Γ �Int B and

Γ �Int⊥....
Γ �Int C

So, using (∧-I) we have
Γ �Int⊥....
Γ �Int B

Γ �Int⊥....
Γ �Int C

Γ �Int (B ∧ C)

The remaining cases are similar. ��
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2.2.3 Axioms and schemata

We assume the presence of axioms and schemata that define knowledge about
a problem domain and provide extra-logical constraints about the behaviour of
signature terms.

Recall that the axioms of ADT are given by a set of WFF (Σ) formulae,
AX. To use these axioms, we use an introduction rule of the form

A ∈ AX

�Int A
(Ax-I)

We permit a potentially infinite number of axioms in AX to be generated
by schemata.

Definition 2.2.2 (General form of schema). A schema R parametrized
over lists of predicates X̄, terms ȳ and sorts Z̄, has the form

Γ1 �Int F1 . . . Γn �Int Fn

Γ �Int F
(R[X̄; ȳ; Z̄])

When applying a schema, we must substitute actual predicates F̄ , terms t̄ and
sorts S̄, to form a rule of the form

Γ1 �Int F1[F̄ /X̄][t̄/ȳ][S̄/Z̄] . . . Γn �Int Fn[F̄ /X̄][t̄/ȳ][S̄/Z̄]
Γ �Int F [F̄ /X̄][t̄/ȳ][S̄/Z̄]

(R[F̄ ; t̄; S̄])

Remark 2.9. The schemata rules are to be considered as a metalogical device
for generating axioms in AX. This is possible when we consider each schema
application of the form

Γ1 �Int F1 . . . Γn �Int Fn

Γ �Int F

to generate an axiom ((Γ1 ⇒ F1)∧ . . .∧ (Γn ⇒ Fn))⇒ F in AX. The generated
axiom and the schema application are equivalent, because repeated application
of (⇒-E) on the former simulates satisfaction of premises in the latter.

Induction schemata may be provided for the data types of Σ that can be
generated by constructor functions. These schemata are defined in the usual
fashion for a data type: to prove a statement over all elements of a type we
show that the statement holds over the generation of the sort.
Example 2.3. For instance, assuming Σ has a sort of integers int, with all
elements generated from the constant 0 by the operation suc : int→ int, then
we have the induction schema

V [0/x] ∧ ∀y : int • V [y/x]⇒ V [suc(y)/x]
∀x : int • V

(IndInt[[V ]])
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Remark 2.10. It is possible to treat induction more generally. This is easy in
higher-order logic — see, e.g., Hayashi and Nakano [HN88] or Paulin-Mohrin
[PM89, PM93] for two different approaches. In Chapter 7 of Part IV (pp. 243–
244), we show how to treat induction generally for a range of sorts when rea-
soning with algebraic specifications. There we show how to generate induction
schemata for sorts with constructors. Such techniques can also be employed
for this logic, but we defer them until Part IV, where the use of structured
specifications makes for a more systematic treatment and aids intelligibility.
Remark 2.11. Our notion of schemata provide a limited way of simulating sec-
ond order logic — see, e.g., [Lei94, 279–285].

We give several standard schemata for reasoning about equality and disjoint
unions in lambda terms. These are provided in Fig. 2.4. These schemata are
to be considered as a means of generating axioms that will be assumed to be
included in AX. Because they define the usual notions of equality and properties
of the lambda calculus, these schemata do not affect the consistency of AX and
the fact that there is a model for them.

�Int u =s r ⇒ r =s u
(ref)

where s is a basic sort

P [r/y] ∧ u =s r

P [u/y]
(subst)[[P ]; [u; r]; [s]]

where u and r are well-sorted of basic sort s and
y is the only free variable in P

�Int ∀y1 : s1 • P [Inl (y1)/x] ∧ ∀y2 : s2 • P [Inr (y2)/x]
�Int ∀x : s1|s2 • P

(disj-ind)[P ; [s1; s2]]

�Int Inl (u) = Inl (r)
�Int u =s1 r

(union=1)[[u; r]; [s1; s2]]

where Inl (u) and Inl (r) are well-sorted terms of sort (s1|s2)

�Int Inr (u) = Inr (r)
�Int u =s1 r

(union=2)[[u; r]; [s1; s2]]

where Inr (u) and Inr (r) are well-sorted terms of sort (s1|s2)

�Int Inl (u) = Inr (r) ⇒ ⊥ (union�=)[[u; r]; [s1; s2]]

where u and r are well-sorted terms of sorts s1 and s2 respectively

Fig. 2.4. Equality schemata and schemata for reasoning about disjoint unions.
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2.3 Logical Type Theory

Our intuitionistic calculus corresponds to a type theory, LTT, essentially a
lambda calculus with dependent sum and product types. This correspondence
is known as the Curry–Howard isomorphism. The idea is that proofs formed
using the calculus can be represented as lambda calculus terms (called proof-
terms) with formulae considered as types of terms. The rules of Fig. 2.3 and
the axiom and schemata then correspond to type inference rules.
Remark 2.12. Note that these proof-terms and types define a theory distinct and
separate from the terms and sorts of Term(Σ). This is an important feature of
our presentation of the isomorphism — we use different terms for different tasks.
Proof-terms, PT (Int), are used to represent proofs, while terms of Term(Σ) are
used to denote elements of a problem domain for reasoning about within the
logic.

In fact, we will see that terms of Term(Σ) also serve another purpose —
to denote SML programs. Proof-terms, however, may not be used in this way.
This is in contrast to some näıve proofs-as-programs approaches, such as that
of Martin-Löf [ML84, ML85], where a single type theory is used to denote terms
for predication in the logic, and proofs of the logic. (Appendix A, Section A.2,
provides a brief overview of the type theories for which the Curry–Howard
isomorphism holds. A comparison is made between the use of a single type
theory to multiple type theories to denote terms for predication in the logic,
proofs of the logic, and programs.)

2.3.1 Proof-terms

The proof-terms of the type theory, PT (Int), are given in Fig. 2.5. The grammar
uses a denumerable set of proof-term variables, V arPT (Int).

2.3.2 Basic type inference rules

The basic type inference rules of LTT are presented in Fig. 2.6. These correspond
to the basic logical rules of Int (rather than the schemata or axioms).
Remark 2.13. For the sake of clarity, we equip PT (Int) with two forms of lambda
abstraction: abstraction over proof-term variables and abstraction over Σ term
variables. This necessitates two forms of application. Abstraction (abstract x. a)
and application (app(a, b)) correspond to applications of (⇒-I) and (⇒-E), re-
spectively. In contrast, term abstraction (use i : t. a) and term application
(specific(a, v)) correspond to applications of (∀-I) and (∀-E). It is possible to
reformulate the Curry–Howard isomorphism to use a single lambda abstraction
and application to correspond to introduction and elimination for both kinds
of connective. This is, in fact, what is done in much of the proofs-as-programs
literature — see, e.g., Martin-Löf [ML84, ML85], the Nuprl system [CMH86]
or the Coq system [CH88]. However, to do this, the distinction between proof-
terms and terms is not so obvious, and the resulting theories can be difficult
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a, b, c ::= PT (Int), proof-terms of Int
xF proof-term with type superscript,

x ∈ V arPT (Int), F ∈ WFF (Σ)
Axiom(F ) axiom, F ∈ WFF (Σ)
Schema(N, [ē; F̄ ; t̄; s̄]) schema application, N the name of

the schema, F̄ a list of formulae
from WFF (Σ), t̄ a list of terms from
Term(Σ), and s̄ a list of basic sorts

abstract x. a abstraction
app(a, b) application
use i : t. a term abstraction, i ∈ V ar, t a sort of Σ
specific(a, v) term application, v ∈ Term(Σ)
〈a, b〉 pair
fst(a) first projection
snd(b) second projection
inl(a) in left
inr(b) in right
case a of inl(x).b, inr(y).c case
abort(a) abort
show(v, a) witness, v ∈ Term(Σ)
select (a) in y : t.x.b select, y ∈ V ar, t a sort of Σ, x ∈ V arPT (Int)

Fig. 2.5. Syntax of the proof-terms PT (Int) for the calculus Int.

to understand and use for a novice. We employ two forms of abstraction and
application to highlight the distinction between terms and proof-terms and to
aid intelligibility.

2.3.3 Axioms and schemata

We use special proof-terms to designate application of axioms and schemata.
We require that there be type inference rules for all axioms and schemata of
Int.

Definition 2.3.1 (General form of type inference rules for axioms).
Recall the axiom application

F ∈ AX

�Int F
(Ax)

We use the proof-term Axiom(F ) to denote an application of this rule in the
logical type theory, with corresponding type formation rule

F ∈ AX

�Int Axiom(F )F
(Ax)
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x, y are arbitrary Σ variables of some sort s, and a is a term of arbitrary
sort s.

xA �Int xA
(Ass-I)

∆, xA �Int bB

∆ �Int abstract x. b(A⇒B)
(⇒-I)

∆ �Int aA ∆′ �Int p(A⇒B)

∆, ∆′ �Int app(p, a)B
(⇒-E)

∆ �Int pA

∆ �Int use x : s. p∀x:s•A
(∀-I)

∆ �Int p∀x:s•A

∆ �Int specific(p, c)A[c/x]
(∀-E)

∆ �Int pP [a/y]

∆ �Int show(a, p)∃y:s•P
(∃-I)

∆1 �Int p∃y:s•P ∆2, x
P [z/y] �Int qC

∆1, ∆2 �Int select (p) in z.x.qC
(∃-E)

∆ �Int aA ∆′ �Int bB

∆, ∆′ �Int 〈a, b〉(A∧B)
(∧-I)

∆ �Int p(A1∧A2)

∆ �Int fst(p)A1
(∧-E1)

∆ �Int p(A1∧A2)

∆ �Int snd(p)A2
(∧-E2)

∆ �Int pA1

∆ �Int inl(p)(A1∨A2)
(∨-I1)

∆ �Int pA2

∆ �Int inl(p)(A1∨A2)
(∨-I2)

∆ �Int pA∨B ∆1, x
A �Int aC ∆2, y

B �Int bC

∆1, ∆2, ∆ �Int case p of inl(x).a, inr(y).bC
(∨-E)

∆ �Int a⊥

∆ �Int abort(a)A
(⊥-E)

The type inference rules require the same conditions for application as their corre-
sponding logical rules given Fig. 2.3.

Fig. 2.6. The logical rules of our calculus presented as type inference rules.

Definition 2.3.2 (General form of type inference rules for schemata).
Given a schema rule R[X̄; ȳ; Z̄] from Int, where X̄, ȳ and Z̄ are lists of variables
ranging over formulae, terms and sorts, respectively:

Γ1 �Int F1 . . . Γn �Int Fn

�Int F
R[X̄; ȳ; Z̄]

we define corresponding type formation schemata for proof-terms of the form

Schema(R, [[q1; . . . ; qn]; X̄; ȳ; Z̄])

written
�Int qF1

1 . . . �Int qFn
n

�Int Schema(R, [[q1; . . . ; qn]; X̄; ȳ; Z̄])F
R[X̄; ȳ; Z̄]

Example 2.4. The (subst) schema of Fig. 2.4 corresponds to the following type
inference schema
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q1[r/y]P [r/y] qu=sr
2

Schema(subst, [[q1; q2];P ; ȳ; Z̄])P [u/y]
(subst)[[P ]; [u; r]; [s]]

2.3.4 The Curry–Howard isomorphism

Every proof-term that is well-typed according to the inference rules corresponds
to an intuitionistic proof. This fact is known as the Curry–Howard isomorphism,
formalized according to the following theorem.

Theorem 2.3.3 (Curry–Howard isomorphism). Let Γ = {G1, . . . , Gn} be
a set of premises. Let Γ ′ = {x1

G1 , . . . , xn
Gn} be a corresponding set of typed

proof-term variables.
Then,

1. Given a natural deduction proof of

Γ �Int A

we can use the type inference rules to construct a well-typed proof-term pA

whose free proof-term variables are Γ ′.
2. Given a well-typed proof-term pA whose free term variables are Γ ′, we can

construct a natural deduction proof of Γ �Int A.

Proof. The proof of item 1 follows easily by induction on the structure of the
deduction, D, and the definition of the typing rules and Int. The proof of item
2 follows similarly by induction on the structure of the deduction, p. ��

2.3.5 Reduction rules

Because proof-terms are terms in a form of lambda calculus, they have reduc-
tion rules whose application corresponds to proof normalization by the Curry–
Howard isomorphism.

1. app(abstract X. a(A⇒B), bA) �Int a[b/X]B

2. specific(use x : s. a∀x:s•A, v : s) �Int a[v/x]A[v/x]

3. fst(〈a, b〉(A∧B)) �Int aA

4. snd(〈a, b〉(A∧B)) �Int bB

5. case inl(a)A∨B of inl(xA).bC , inr(yB).cC �Int b[a/x]C

6. case inr(a)A∨B of inl(xA).bC , inr(yB).cC �Int c[a/y]C

7. select (show(v, a)∃y:s•P ) in z.xP [z/y].bC �Int b[a/x][v/z]C

Fig. 2.7. The seven reduction rules that define �Int.
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There are seven rules that define the normalization process over proof-terms,
which are given in Fig. 2.7. Each rule of Fig. 2.7 represents a possible proof
simplification. These may be obtained by matching redundant applications of
elimination and introduction rules.

For example, reduction 1 of Fig. 2.7 corresponds to deleting a (⇒-I) followed
by a (⇒-E):

.... x

A.... a

B
(A⇒ B)

(⇒-I)
.... b

A

B
(⇒-E)

which reduces to

.... b

A.... a[b/x]
B

Similarly, reduction 7 of Fig. 2.7 corresponds to deleting a (∃-I) followed by a
matching (∃-E):

.... a

P [v/y]
∃y : s • P

(∃-I)
P [z/y].... b

C

C
(∃-E)

which reduces to

.... b

P [z/y].... b[a/x][v/z]
C

The left hand side of a reduction rule is called redex and right hand side of
a rule is called the reduct.

We write
p �̂Int p′

when p′ may be obtained from p by the transitive closure of �Int. When p �̂Int p′

holds, then p′ is obtainable from p by a sequence of replacements of subterms
using the rules of Fig. 5.4. In this case, we say that p is reducible to p′.
Remark 2.14. Recall that we treat terms Term(Σ) and proof-terms PT (Int) as
serving different purposes. This is reflected in the fact that the Term(Σ) terms
that are used in term application and in witness proof-terms, are not reduced
by these reduction rules. For instance, the (one-step) normalization chain:

specific(use x. show(x + x, p)∀x:int•∃y:int•2∗x=y, 3)∃y:int•2∗3=y

� show(3 + 3, p)∃y:int•2∗3=y

continues no further. The term (3 + 3) is treated as a constant. As we shall
see, the term (3 + 3) can only be “reduced” when evaluated in a separate
programming language.

This is a point of deviation from näıve proofs-as-programs approaches, which
usually treat proof-normalization and program evaluation as one and the same.
For example, a Martin-Löf type theory has reduction rules for normalization
and for evaluating data types. The equivalent of the above proof-term in a
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Martin-Löf type theory would reduce the witness term to give a proof-term of
the form (6, p) — considered to be the return value of the program.

The state-of-the-art approach of this chapter is that reduction rules only
correspond to normalization of proofs, while, separately, we employ extraction
to obtain optimized SML programs from proofs. So, in contrast to näıve-proofs-
as-programs, there is a clear separation of proofs from programs. This point
will be important in the next chapter where we shall take such a separation as
important to the correct generalization of our approach.

2.3.6 Strong normalization

The strong normalization property tells us that the normalization process over a
calculus will always terminate. To show that this property holds over our calcu-
lus, we need to show that the proof-terms of LTT(Int) are strongly normalizable,
according to the following definition.

Definition 2.3.4 (Strongly normalizable proof-terms). We say that a
proof-term is normal if it contains no redex — that is to say, it is irreducible.

Given a proof-term t, we let N(t) denote the least upper bound of lengths
of reduction sequences for the term t. We say that t is strongly normalizable if
all reduction sequences are finite.

Remark 2.15. Clearly, if N(t) is finite, then t is strongly normalizable and, by
König’s Lemma, conversely.

Theorem 2.3.5. Any term t of PT (Int) is strongly normalizable.

Proof. This is the proof of strong normalization for many-sorted first-order
intuitionistic logic and the fact that proof-terms for axiom introductions are
irreducible. For a proof, see [CS93]. ��
Lemma 2.3.1. Take any proof-terms aA and bB. If aA �Int bB, then the type
of a is the same as the type of B.

Proof. By induction on the length of the proof-term, using the fact that if a
proof-term a reduces to b by one of the rules of Fig. 5.4, then the type of a has
the same type as b. ��
Remark 2.16. By the Curry–Howard isomorphism of Theorem 2.3.3 and Lemma
2.3.1, if proof-term a is reducible to b, then both represent proofs of the same
formula. In this sense, reducibility is a form of equivalence between proofs.
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2.3.7 The Church–Rosser Property

The Church–Rosser property says that if a proof’s normalization sequence can
diverge, then eventually the divergent sequences will converge to yield the same
proof.

Usual proofs of the property involve showing that the transitive closure of
�Int satisfies the so-called diamond property.

Definition 2.3.6 (Diamond property). A relation # over a set S satisfies
the diamond property when

for all x, x1, x2 in S(x#x1 and x#x2 ⇒ there exists a x3 such that
(x1#x3 and x2#x3))

Theorem 2.3.7 (Church–Rosser property). The relation �Int satisfies the
diamond property (and therefore �̂Int, as the transitive closure of �Int, satisfies
the diamond property).

Proof. Because our proof-terms are terms in a lambda calculus, with �Int a
reduction relation over the lambda calculus, we can show this by the proof
given in [Bar84, pp. 59–62], a proof due to Tait and Martin-Löf. ��

2.4 Programs in SML

We will be extracting terms from SML programs from proofs represented in
the LTT. For simplicity of presentation, instead of dealing with the full SML
language specification [MTH90], we consider the subset corresponding to the
simply typed lambda calculus. This enables us to consider a simple operational
semantics for our programs.

Our subset of SML is exactly the terms, Term(Σ), of Fig. 2.1. We use
typewriter font to distinguish terms of Term(Σ) when used as programs, as
opposed to terms in formulae. These terms can be considered well-formed and
well-typed SML programs, where

• We assume all programs are evaluated with respect to a preamble — a library
consisting of data type and terminating function declarations.

• All the functions and constants from the signature Σ are defined in the
preamble.

• Basic sorts correspond to assumed SML types that have been defined in the
preamble.

• Functional and product sorts t → u and sorts t ∗ u are taken as functional
and product SML types t->u and t ∗ u respectively. For the purposes of
clarity and to provide a relation to terms of ADT, we continue to write
disjoint unions in the form t|u. However, this is to be taken as shorthand
for the correct syntax in SML,
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(t, u) disjointUnion

an instantiation of the following parametrized SML data type

datatype (′a,′ b) disjointUnion=Inl of ′a | Inr of ′b; ;

We assume the parametrized data type is defined in the preamble, so that
our disjoint unions are available to all programs that use the preamble.

Remark 2.17. The match construct of Term(Σ) forms a valid SML matching
over the disjoint union data type defined using Inl and Inr constructors.

The terms form a lambda calculus with the usual reduction rules. We con-
sider these rules to provide a simple operational semantics for determining pro-
gram evaluation. The semantics is given by the reduction relation �SML, defined
in Fig. 2.8.

In addition to the usual r reduction rule, we provide rules for projections
and cases.

Also, we provide rules for applying function symbols to arguments. We
assume that all function symbols of Σ correspond to functions in the SML
preamble. When a function is applied to arguments of appropriate arities and
types, SML should always evaluate the result to an answer value, which can
be represented as another term of Term(Σ). This assumption is formalized by
assuming a mapping, Eval, that gives the return value for function applica-
tions. Given a function symbol f ∈ TFs1...sn,s and arguments (a1, . . . , an) of
sort (s1 ∗ . . . ∗ sn), Eval(f(a1, . . . , an)) returns a term from Term(Σ) of sort s.
The term Eval(f(a1, . . . , an)) is exactly the return value obtained by evaluating
f(a1, . . . , an) in SML.

Assumption 2.1. For the purposes of generality, we do not explicitly define Eval
for the function symbols that occur in lambda terms. Instead, we assume that
Eval is always defined to represent the definition of the function symbols in
a loaded SML preamble. We assume that, because the preamble consists of
terminating programs, the definition of Eval is such that repeated applications
of �SML always terminate.

We write
a �∗

SML b

if b can be obtained from a by one or more applications of the rules. We write
�̂SML for the transitive closure of �SML, and say that a evaluates to b if

a �̂SML b

Remark 2.18. A standard SML compiler is equipped with a denotational se-
mantics that is compatible with our rules [MTH90]. This is true because SML
was designed to incorporate the simply typed lambda calculus.
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(fn x : s => p) a �SML p[a/x]
match Inl(a) with inl(x) => b | inr(y) => c �SML b[a/x]
match Inr(a) with inl(x) => b | inr(y) => c �SML c[a/y]

fst((a, b)) �SML a
snd((a, b)) �SML b

f(a1, . . . , an) �SML Eval(f(a1, . . . , an))

Fig. 2.8. The operational semantics of our fragment of SML.

Because SML terms can be used both as programs and as terms in the logic,
it is desirable to be able to reason about program evaluation using the logic.
This is achieved by adding the following schema to our calculus

a �∗
SML b

�Int a =s b
(red=)[[a,b];[s]]

where a : s and b : s are well-typed (well-sorted) terms of both SML and ADT

(note the change in font to denote the respective uses). This schema permits us
to treat reducible terms as equivalent according to an equality =s relation. In
this way the logic can correctly reason about the evaluation of program terms.

Assumption 2.2. We make the following assumption. When considered as SML
programs, functions always evaluate in a way that is consistent with their spec-
ification given by AX. That is to say, we require that the definitions of Eval,
�SML and the addition of the (red=) rule to AX still yield consistent models
for ADT. In particular we consider our subset of the SML language together
with the preamble to form a model of ADT. This model is of main interest to
us, because we are primarily interested in using ADT to reason about our SML
programs.

2.5 Program synthesis

We are now able to show how to synthesize correct SML programs from intu-
itionistic proofs. Our method follows the principles of state-of-the-art (SOA)
proofs-as-programs. We define an optimising extraction map. Given a proof-
term in the LTT corresponding to a proof of a specification, the map produces
a program in SML that satisfies the specification.

The way by which a formula specifies a program is formalized by a no-
tion of modified realizability between SML programs and formulae. Following
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F etype(F )

P (ā) Unit

(A ∧ B)

⎧⎨
⎩

etype(A) if not H(B)
etype(B) if not H(A)
etype(A) ∗ etype(B) otherwise

(A ∨ B) etype(A)|etype(B)

(A ⇒ B)
{

etype(B) if not H(B)
etype(A) → etype(B) otherwise

∀x : s • A s → etype(A)

∃x : s • A

{
s if H(A)
s ∗ etype(A) otherwise

⊥ Unit

P is an atomic predicate.

Fig. 2.9. Definition of etype.

similar SOA approaches, our extraction map involves removal of nonconstruc-
tive information from proof-terms, and type simplification, to transform logical
proof-terms into realizing SML lambda terms with simple types.

2.5.1 Modified realizability

We use a notion of modified realizability between our formulae and programs
of SML, based on that given in [Kre59, BS95a, Dil80]. Essentially, an SML
program is a modified realizer of a formula if it can act as a required Skolem
function for the Skolem form of a formula. We define these concepts now.

We first need to define a sort extraction map xsort from formulae to sorts of
Σ. This is given by Fig. 2.9.

Then we define the Skolem form of formulae.

Definition 2.5.1 (Skolem form and Skolem functions). Given a closed
formula A, we define the Skolem form of A to be the Harrop formula Sk(A) =
Sk′(A, ∅), where Sk′(A, AV ) is defined as follows.

A unique function letter fA, called the Skolem function, is associated with
each such formula A, of sort etype(A). AV represents a list of application
variables for A (that is, the variables that will be arguments of fA). If AV
is {x1 : s1, . . . , xn : sn} then f(AV ) stands for the function application
app(f, (x1, . . . , xn)).

1. If A is Harrop, then Sk′(A, AV ) = A.
2. If A = (B ∨ C), then

Sk′(A, AV ) = (∀x : etype(B) • fA(AV ) = Inl (x)⇒ Sk′(B, AV )[x/fB ])
∧(∀y : etype(C) • fA(AV ) = Inr (y)⇒ Sk′(C, AV )[y/fC ])
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3. If A = (B ∧ C), then
a) If B is Harrop and C is not Harrop,

Sk′(A, AV ) = B ∧ Sk′(C, AV )[snd (fA)/fC ]

b) If B is not Harrop and C is Harrop,

Sk′(A, AV ) = (Sk′(B, AV )[fst (fA)/fB ] ∧ C)

c) If B and C are not Harrop,

Sk′(A, AV ) = (Sk′(B, AV )[fst (fA)/fB ] ∧ Sk′(C, AV )[snd (fA)/fC ])

4. If A = (B ⇒ C), then
a) If B is Harrop,

Sk′(A, AV ) = (B ⇒ Sk′(C, AV )[fA/fC ])

b) If B is not Harrop and C is not Harrop,

Sk′(A, AV ) = ∀x : etype(B) • (Sk′(B, AV )[x/fB ]⇒
Sk′(C, AV )[(fAx)/fC ])

5. If A = ∃y : s • P , then
a) when P is Harrop, Sk′(A, AV ) = Sk′(P, AV )[fA(AV )/y].
b) when P is not Harrop,

Sk′(A, AV ) = Sk′(P, AV )[fst (fA(AV ))/y][snd (fA(AV ))/fP ]

6. If A = ∀x : s • P , then Sk′(A, AV ) = ∀x : s • Sk′(P, AV )[(fAx)/fP ].

Example 2.5. Given a formula A defined as ∃y : int • y ≥ s(s(s(s(0)))), the
Skolem form Sk(A) is fA ≥ s(s(s(s(0)))).

Recall that our SML programs may be represented in formulae. We define
an SML program to be a modified realizer when, treated as a term of Term(Σ),
it can be proved to be a Skolem function for the Skolem form of the formula.

Definition 2.5.2 (Modified realizability). A program p is a modified real-
izer of a formula F if, and only if,

�Int Sk(F )[p/fF ]

is provable (where p is the representation of p as a term of Term(Σ)). In this
case, we write

p mr F

We will need the following lemma

Lemma 2.5.1. If there is a proof Γ �Int Sk(A)[a/fA] then Γ �Int A.

Proof. By induction on the form of A. ��
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2.5.2 Extraction map

The extraction map, extractInt, from proof-terms to SML programs, is given in
Fig. 2.10.

The map presumes a set of variables in V ar, each corresponding to a proof-
term variable from V arPT (Int),

{xu | u ∈ V arPT (Int)}
The principle goal of our work is to produce correct code from proofs of

specifications.
Theorem 2.5.3 and Corollary 2.5.1 tells us that extractInt produces modi-

fied realizers. Together, these results provide us with the fundamental result of
our SOA approach, telling us that the map extracts correct code from proofs of
specifications.

pP extractInt(pP )
any proof-term
where H(P ) ()

uA xu not H(A)
() H(A)

abstract uA. aB fn xu => extractInt(a) not H(A)
extractInt(a) H(A)

app(cA⇒B , aA)
extractInt(c) H(A)
(extractInt(c) extractInt(a)) not H(A)

use x : s. aA fn x : s => extractInt(a)
specific(a∀x:s•A, v) (extractInt(a) v)

〈aA, bB〉 (extractInt(a), extractInt(b))
case aA∨B of inl(tA).bC ,

inr(uB).cC match extractInt(a) with
Inl(xt) => extractInt(b),
Inr(xu) => extractInt(c)

show(v, aA)
v H(A)
(v, extractInt(a)) not H(A)

select (a∃y•A) in x.uA[x/y].bB

(fn x => extractInt(b))
extractInt(a)

}
H(A)

(fn x =>
fn xu => extractInt(b))
fst(extractInt(a))
snd(extractInt(a))

⎫⎪⎪⎬
⎪⎪⎭ not H(A)

inl(a) Inl(extractInt(a))
inr(a) Inr(extractInt(a))
fst(a) fst(extractInt(a))

snd(a) snd(extractInt(a))
abort(a⊥) ()

We write H(A) for “A is Harrop”.

Fig. 2.10. Extraction map extractInt defined over the intuitionistic proof-terms.
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Theorem 2.5.3. Let Γ = {uG1
1 , . . . , uGn

1 }.
Let Γ ′ = {Sk(G1)[xu1/fG1 ], . . . , Sk(Gn)[xun

/fGn
]}.

Take any intuitionistic proof that does not use axioms or schemata, repre-
sented in the LTT as

Γ �Int pP .

Then extractInt(p) will produce a modified realizer of P , assuming Γ ′:

Γ ′ �Int Sk(P )[extractInt(p)/fP ]

Proof. First, if P is Harrop then Sk(P ) = P , and we are done.
So, we assume that P is not Harrop and proceed by induction on the length

of the proof. (Note that, in the following, we use both sequent and proof-tree
style notation, depending on convenience.)

Case: (Ass-I). Assume that pP is of the form A obtained by an application
of (Ass-I):

uA �Int uA
(Ass-I)

So Γ ′ = {Sk(A)[xu/fA]} and we can prove

Γ ′ �Int Sk(A)[xu/fA]
(Ass-I)

as required.
Case: (∧-I). Assume that pP is of the form

〈a, b〉(A∧B)

obtained by an application of (∧-I):

Γ1 �Int aA Γ2 �Int bA

Γ1, Γ2 �Int 〈a, b〉(A∧B)
(∧-I)

so that Γ ′ = Γ ′
1 ∪ Γ ′

2.
Because we assume that P is not Harrop, either

1. A and B are both non-Harrop.
2. A is Harrop and B is non-Harrop.
3. A is non-Harrop and B is Harrop.

We deal only with the first case, as the other two cases are similar. Here,

extractInt(p) = (extractInt(a), extractInt(b))

and

Sk(P )[extractInt(p)/fP ] =
Sk(A)[fst (extractInt(p))/fA] ∧ Sk(B)[snd (extractInt(p))/fA]
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So, by the IH, we know there are proofs a′ and b′ such that

Γ ′
1....

Sk(A)[extractInt(a)/fA] (2.3)

and
Γ ′

2....
Sk(B)[extractInt(b)/fB ] (2.4)

The conjunction of these two conclusions is proved by (∧-I):

Γ ′
1.... (2.3)

Sk(A)[extractInt(a)/fA]

Γ ′
2.... (2.4)

Sk(B)[extractInt(b)/fB ]
(Sk(A)[extractInt(a)/fA] ∧ Sk(B)[extractInt(b)/fB ])

(∧-I)
(2.5)

We are required to prove

Γ ′
1, Γ

′
2....

Sk(A)[fst (extractInt(a), extractInt(b))] ∧ Sk(B)[snd (extractInt(a), extractInt(b))/fA]

Our schemata let us take reducible terms as equal. Consequently we can
prove extractInt(a) is fst (extractInt(a), extractInt(b)) and extractInt(b) is
snd (extractInt(a), extractInt(b)). The required conclusion follows from this and
(2.5).

More formally, we proceed as follows. First we show that

�Int fst (extractInt(a), extractInt(b)) = extractInt(a)

This can be seen by applying the (red=) schema of p. 44:

d �∗
SML e

�Int d =s e
(red=)[[d,e];[s]]

Taking d as fst (extractInt(a), extractInt(b)), e as extractInt(a) and s as etype(A),
we have

fst (extractInt(a), extractInt(b)) �∗
SML extractInt(a)

fst (extractInt(a), extractInt(b)) = extractInt(a) (2.6)

with fst (extractInt(a), extractInt(b)) of sort etype(A), and so R1 is the schema
application name (red=)[[fst (extractInt(a); extractInt(b)); extractInt(a)]; [etype(A)]].

Similarly, we obtain �Int snd (extractInt(a), extractInt(b)) = extractInt(b).

snd (extractInt(a), extractInt(b)) �∗
SML extractInt(b)

snd (extractInt(a), extractInt(b)) = extractInt(b)
R2 (2.7)
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where R2 is the schema application

(red=)[[snd (extractInt(a); extractInt(b)); extractInt(b)]; [etype(B)]]

Recall the (subst) schema of Fig. 2.4.
We apply this schema, setting u to fst (extractInt(a), extractInt(b)), r to

extractInt(a) and P to Sk(A)[y/fA] ∧ Sk(B)[extractInt(b)/fB ]

Γ ′
1, Γ

′
2.... (2.5)

Sk(A)[extractInt(a)/fA]∧
Sk(B)[extractInt(b)/fB ]

.... (2.6)
fst (extractInt(a), extractInt(b)) = extractInt(a)

(Sk(A)[extractInt(a)/fA] ∧ Sk(B)[extractInt(b)/fB ])∧
(fst (extractInt(a), extractInt(b)) = extractInt(a))

(∧-I)

Sk(A)[fst (extractInt(a), extractInt(b))/fA] ∧ Sk(B)[extractInt(b)/fB ]
R3 (2.8)

where R3 is

(subst)[[Sk(A)[y/fA] ∧ Sk(B)[extractInt(b)/fB ]];
[fst (extractInt(a), extractInt(b)); extractInt(a)]; [etype(A)]]

We apply this schema again, setting u to snd (extractInt(a), extractInt(b)), r
to extractInt(b) and P to (Sk(A)[fst (extractInt(a), extractInt(b))/fA] ∧ Sk(B)[y/fB ])

Γ ′
1, Γ

′
2.... (2.8)

(Sk(A)[fst (extractInt(a), extractInt(b))/fA]∧
Sk(B)[extractInt(b)/fB ])

.... (2.7)
snd (extractInt(a), extractInt(b)) =
extractInt(b)

(Sk(A)[fst (extractInt(a), extractInt(b))/fA] ∧ Sk(B)[extractInt(b)/fB ]∧
snd (extractInt(a), extractInt(b)) = extractInt(b))

(∧-I)

(Sk(A)[fst (extractInt(a), extractInt(b))/fA]∧
Sk(B)[snd (extractInt(a), extractInt(b))/fB ])

R4

where R4 is

(subst)[[(Sk(A)[fst (extractInt(a), extractInt(b))/fA] ∧ Sk(B)[y/fB ])];
[snd (extractInt(a), extractInt(b)); extractInt(b)]; [etype(A)]]

This is the required proof, as the the conclusion is the same as writing

(Sk(A)[fst (extractInt(p))/fA] ∧ Sk(B)[snd (extractInt(p))/fB ])

Case: (∧-E1). Assume that pP is of the form

fst(q)A

obtained by an application of (∧-E1):
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Γ �Int q(A∧B)

Γ �Int fst(q)A
(∧-E1)

We are required to prove Γ ′ �Int Sk(A)[extractInt(p)/fA].
There are two possible cases: either B is Harrop or B is not Harrop. We

reason over these cases.

1. Assume that B is Harrop, so that Sk(B) = B. Then,

extractInt(p) = extractInt(q)

and we are required to prove Sk(A)[extractInt(q)/fA].
By the IH and the fact that Sk(B) = B, we know that there is a proof of
the form

Γ ′
....

(Sk(A)[extractInt(q)/fA] ∧B)

From this, we can derive

Γ ′
....

(Sk(A)[extractInt(q)/fA] ∧B)
Sk(A)[extractInt(q)/fA]

(∧-E1)

as required.
2. Assume that B is not Harrop. Then,

extractInt(p) = fst (extractInt(q))

and we are required to prove Γ ′ �Int Sk(A)[fst (extractInt(q))/fA].
By the IH, we know that there is a proof of the form

Γ ′
....

(Sk(A)[fst (extractInt(q))/fA] ∧ Sk(B)[snd (extractInt(q))/fB ])

We apply (∧-E1) this to obtain the required proof

Γ ′
....

(Sk(A)[fst (extractInt(q))/fA] ∧ Sk(B)[snd (extractInt(q))/fB ])
Sk(A)[fst (extractInt(q))/fA]

(∧-E1)

Case: (∧-E2). Similar to the case (∧-E1) above.
Case: (∨-I1). Assume that pP is of the form

inl(a)A∨B
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obtained by an application of (∨-I1)

Γ �Int aA

Γ �Int inlaA∨B
(∨-I1)

so that extractInt(p) = Inl(extractInt(a)).
We are required to show that Γ ′ �Int Sk(P )[extractInt(p)/fP ]. That is to say,

we must prove

Γ ′ �Int (∀x : etype(A) • Inl (extractInt(a)) = Inl (x)⇒ Sk(A)[x/fA])∧
(∀y : etype(B) • Inl (extractInt(a)) = Inr (y)⇒ Sk(B)[y/fB ])

To show this, we use the following assumptions

Inl (extractInt(a)) = Inl (x) (2.9)

and
Inl (extractInt(a)) = Inr (y) (2.10)

By the IH, there is a proof of the form

Γ ′
....

Sk(A)[extractInt(a)/fA] (2.11)

Recall the (union=1) schema: for any u and r of the same type,

Inl (u) = Inl (r)
u =s1 r (union=1)[[u; r]; [s1; s2]]

Letting u be extractInt(a) and r be x, then using assumption (2.9), we have

Inl (extractInt(a)) = Inl (x)
extractInt(a) = x

R1 (2.12)

where R1 is (union=1)[[extractInt(a); x]; [etype(A); etype(B)]].
Recall the reflexivity (ref) schema of Fig. 2.4. Letting u be extractInt(a), r

be x and s be etype(A) in this schema, then using (2.12), we have

extractInt(a) = x

x = extractInt(a)
R2 (2.13)

where R2 is ref [[extractInt(a); x]; etype(A)].
Applying (∧-I) to the proofs (2.13) and the IH (2.11) will give us

Γ ′
....

Sk(A)[extractInt(a)/y]

Inl (extractInt(a)) = Inl (x)....
x = extractInt(a)

(Sk(A)[extractInt(a)/y] ∧ x = extractInt(a))
(∧-I)
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By the (subst) schema, with P set to Sk(A)[y/fA], r set to extractInt(a) and
u set to x, we obtain

Γ ′, Inl (extractInt(a)) = Inl (x)....
(Sk(A)[extractInt(a)/y] ∧ x = extractInt(a))

Sk(A)[x/fA]
R3 (2.14)

where R3 is (subst)[[Sk(A)[y/fA]]; [extractInt(a); x]; [etype(A)]].
We apply (⇒-I) on (2.14) introducing assumption (2.9), and then perform

(∀-I) abstracting over x:

Γ ′, [Inl (extractInt(a)) = Inl (x)]....
Sk(A)[x/fA]

Inl (extractInt(a)) = Inl (x)⇒ Sk(A)[x/fA]
(⇒-I)

∀x : etype(A) • Inl (extractInt(a)) = Inl (x)⇒ Sk(A)[x/fA]
(∀-I)

(2.15)

This gives us the left hand side of the required conjunction.
Recall the (union�=) schema of Fig. 2.4: for any u and r of types s1 and s2

respectively,

Inl (u) = Inr (r)⇒ ⊥ (union�=)[[u; r]; [s1; s2]]

Letting u be extractInt(a) and r be y, we have

Inl (extractInt(a)) = Inr (y)⇒ ⊥ R4 (2.16)

where R4 is (union�=)[[extractInt(a); y]; [etype(A); etype(B)]].
So, the assumption (2.10) and (2.16) give a contradiction, from which we

may conclude Sk(B)[y/fB ] by the absurdity rule:

Inl (extractInt(a)) = Inr (y)⇒ ⊥ Inl (extractInt(a)) = Inr (y)
⊥ (⇒-E)

Sk(B)[y/fB ]
⊥−E

(2.17)

Finally, applying (⇒-I) to (2.17) introducing assumption (2.10), and then
performing (∀-I) abstracting over y will give

[Inl (extractInt(a)) = Inr (y)]....
Sk(B)[y/fB ]

extractInt(a) = Inr (y)⇒ Sk(B)[y/fB ]
(⇒-I)

∀y : etype(B) • extractInt(a) = Inr (y)⇒ Sk(B)[y/fB ]
(∀-I)

(2.18)

Then, applying (∧-I) over (2.15) and (2.18), we obtain the required proof:
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Γ ′
....

(∀x : etype(A) • extractInt(p) = Inl (x)⇒ Sk(A)[x/fA])∧
(∀y : etype(B) • extractInt(p) = Inr (y)⇒ Sk(B)[y/fB ])

Case: (∨-I2). Similar to the (∨-I1) case above.
Case: (∨-E). Assume that pP is of the form

case e of inl(x).a, inr(y).bC

obtained by an application of (∨-E)

Γ1 �Int eA∨B Γ2, u
A �Int aC Γ3, v

B �Int bC

Γ1, Γ2, Γ3 �Int case e of inl(u).a, inr(v).bC
(∨-E)

so that Γ ′ = Γ ′
1 ∪ Γ2 ∪ Γ3, and extractInt(p) is defined

extractInt(p) = match extractInt(e) with
Inl(xu) => extractInt(a),
Inr(xv) => extractInt(b)

(2.19)

By the IH,

Γ ′
1 �Int Sk(A ∨B)[(extractInt(e))/fA∨B ] (2.20)

Γ ′
2, Sk(A)[xu/fA] �Int Sk(C)[(extractInt(a))/fC ] (2.21)

Γ ′
3, Sk(B)[xv/fB ] �Int Sk(C)[(extractInt(b))/fC ] (2.22)

By (⇒-I) and (∀-I) on (2.21) and (2.22) respectively, we obtain

Γ ′
2 �Int ∀xu : etype(A) • Sk(A)[xu/fA] ⇒ Sk(C)[(extractInt(a))/fC ] (2.23)

Γ ′
3 �Int ∀xv : etype(B) • Sk(B)[xv/fB ] ⇒ Sk(C)[(extractInt(b))/fC ] (2.24)

Also, by the definition of Sk(A ∨B), (2.20) may be rewritten:

Γ ′
1 �Int M (2.25)

where M is

(∀x : etype(A) • extractInt(e) = Inl (x)⇒ Sk(A)[x/fA])∧
(∀y : etype(B) • extractInt(e) = Inr (y)⇒ Sk(B)[y/fB ])

Using the (disj-ind) schema, we claim it is possible to prove

�Int (∃vl : etype(A) • extractInt(e) = Inl (vl))∨
(∃vr : etype(A) • extractInt(e) = Inr (vr)) (2.26)
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Proof of (2.26). To see this, first recall the (disj-ind) schema of Fig. 2.4 for
terms of type (s1|s2) and arbitrary predicate Q:

∀y1 : s1 • (Q[Inl (y1)/x] ∧ ∀y2 : s2 •Q[Inr (y2)/x])
∀x : s1|s2 •Q

(disj-ind)[[Q]; [s1; s2]]

We use this schema with s1 set to etype(A), s2 set to etype(B) and Q set to the
statement

(∃vl : etype(A) • x = Inl (vl)) ∨ (∃vr : etype(B) • x = Inr (vr))

in the following proof

Inl (y1) = Inl (y1)
R2

∃vl : etype(A) • Inl (y1) = Inl (vl)
(∃-I)

Q[Inl (y1)/x]
(∨-I1)

∀y1 : etype(A) • Q[Inl (y1)/x]
(∀-I)

Inr (y2) = Inr (y2)
R3

∃v2 : etype(B)•
Inr (y2) = Inr (v2)

(∃-I)

Q[Inr (y2)/x]
∨ − Il

∀y2 : etype(B) • Q[Inr (y2)/x]
(∀-I)

(∀y1 : etype(A) • Q[Inl (y1)/x]) ∧ (∀y2 : etype(B) • Q[Inr (y2)/x])
(∧-I)

∀x : etype(A)|etype(B) • Q
R1

(2.27)
where R1 is

(disj-ind)[[(∃vl : etype(A) • x = Inl (vl)) ∨ (∃vr : etype(B) • x = Inr (vr))],
[etype(A); etype(B)]]

and R2 is
(red=)[[Inl (y1); Inl (y1)]; [etype(A)|etype(B)]]

and R3 is
red=[[Inr (y2); Inr (y2)]; [etype(A)|etype(B)]]

both the names of applications of the schema (red=).
By setting extractInt(e) for x in (2.27), we have the required proof of (2.26).
End of proof of (2.26).
We reason over the two possible cases given by (2.26).
Left case of (2.26). We assume the left case holds:

∃vl : etype(A) • extractInt(e) = Inl (vl) (2.28)

We will establish

Γ ′,∃vl : etype(A) • extractInt(e) = Inl (vl) �Int Sk(C)[extractInt(p)/fC ] (2.29)

We first assume that there is a kl : etype(A) such that

extractInt(e) = Inl (kl) (2.30)
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Also, we observe that it is possible to derive

extractInt(e) = Inl (kl)....
(Q′[extractInt(b)/y] ∧ Inl (kl) = extractInt(e)) (2.31)

with Q′ defined to be

extractInt(p) = match y with Inl (xu) => extractInt(a) | Inr (xv) =>extractInt(b)

This follows from taking the conjunction of P [extractInt(b)/y] (that is, of the
identity extractInt(p) = extractInt(p)) obtained using the (red=) schema, and of
Inl (kl) = extractInt(e)), obtained from the assumption (2.30)
extractInt(e) = Inl (kl) and the reflexivity (ref=) schema.

We apply the substitution schema:

extractInt(e) = Inl (kl).... (2.31)
(Q′[extractInt(b)/y] ∧ Inl (kl) = extractInt(e))

extractInt(p) =
match Inl (kl) with Inl (xu) => extractInt(a) | Inr (xv) =>extractInt(b)

R4

(2.32)
where R4 is

(subst)[[extractInt(p) =
match y with Inl (xu) => extractInt(a) | Inr (xv) =>extractInt(b)];

[extractInt(e); Inl (k1)]; [etype(A ∨B)]]

Also, using the (red=) schema we can obtain

t �∗
SML extractInt(a)[kl/xu]

match Inl (kl) with Inl (xu) => extractInt(a) | Inr (xv) =>extractInt(b) =
extractInt(a)[kl/xu]

R5

(2.33)
where t stands for

match Inl (kl) with Inl (xu) => extractInt(a) | Inr (xv) =>extractInt(b)

and R5 is (red=)[[t; extractInt(a)[kl/xu]]; [etype(C)]].
Then, by application of the substitution schema, taking r to be t, u to be

extractInt(a)[kl/xu] and P to be extractInt(p) = y

extractInt(e) = Inl (kl)....
〈p2, p3〉(extractInt(b)=t∧t=extractInt(a)[kl/xu])

extractInt(p) = extractInt(a)[kl/xu]
R6 (2.34)
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where R6 is (subst)[[P ]; [extractInt(a)[kl/xu]; t]; [etype(C)]].
Next we prove

Γ ′
1, Γ2, extractInt(e) = Inl (kl) �Int Sk(C)[(extractInt(a)[kl/xu])/fC ] (2.35)

Proof of (2.35). Using (2.25):

extractInt(e) = Inl (kl)

Γ ′
....

M

∀x : etype(A) • (extractInt(e) = Inl (x) ⇒
Sk(A)[x/fA])

(∧-E1)

extractInt(e) = Inl (kl) ⇒ Sk(A)[kl/fA]
(∀-E)

Sk(A)[kl/fA]
(⇒-E)

(2.36)

We set the xu of (2.23) to be kl,

Γ ′
2.... (2.23)

∀xu : etype(A) • Sk(A)[xu/fA]⇒ Sk(C)[(extractInt(a))/fC ]
Sk(A)[kl/fA]⇒ Sk(C)[(extractInt(a)[kl/xu])/fC ]

(∀-E)
(2.37)

Then, we instantiate (2.37) with with the conclusion of (2.36) to obtain (2.35):

Γ ′
1, extractInt(e) = Inl (kl).... (2.36)

Sk(A)[kl/fA]

Γ ′
2.... (2.37)

Sk(A)[kl/fA]⇒
Sk(C)[(extractInt(a)[kl/xu])/fC ]

Sk(C)[(extractInt(a)[kl/xu])/fC ]
(⇒-E)

End of proof of (2.35). So, using (2.34), (2.35) and (subst), we can derive

Γ ′
1, Γ2, extractInt(e) = Inl (kl).... (2.35)

Sk(C)[(extractInt(a)[kl/xu])/fC ]

extractInt(e) = Inl (kl).... (2.34)
extractInt(p) = extractInt(a)[kl/xu]

Sk(C)[extractInt(p)/fC ]
R6

(2.38)
where R6 is the rule formed from the schema application

(subst)[[Sk(C)[y/fC ]]; [extractInt(e); (extractInt(a)[kl/xu])]; [etype(A ∨B)]]

Observe that kl does not occur in Sk(C)[(extractInt(p))/fC ]. So, we can apply
(∃-E) to assumption (2.28) and (2.38):

∃vl : etype(A) • [extractInt(e) = Inl (vl)]
(Ass-I)

Γ ′
1, Γ

′
2, [extractInt(e) = Inl (kl)]....

Sk(C)[extractInt(p)/fC ]
Sk(C)[extractInt(p)/fC ]

(∃-E)

(2.39)
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This concludes our subproof using the left case of (2.26).
Right case of (2.26). We assume the right case holds:

∃vr : etype(B) • extractInt(e) = Inr (vr) (2.40)

By symmetric reasoning to the previous case, we obtain a proof of the form

Γ ′
1, Γ

′
3,∃vr : etype(B) • extractInt(e) = Inr (vr)....

Sk(C)[(extractInt(p))/fC ] (2.41)

concluding our subproof using the right case of (2.26).
It then remains to apply (∨-E) to the proofs (2.26), (2.41) and (2.39), ob-

taining the required conclusion

A

Γ ′
1, Γ

′
2,

[∃vl : etype(A) • extractInt(e)
= Inl (vl)] .... (2.39)
Sk(C)[(extractInt(p))/fC ]

Γ ′
1, Γ

′
3,

[∃vr : etype(B) • extractInt(e)
= Inr (vr)] .... (2.41)
Sk(C)[(extractInt(p))/fC ]

Sk(C)[(extractInt(p))/fC ]
(∨-E)

where A is
.... (2.26)

(∃vl : etype(A) • extractInt(e) = Inl (vl)) ∨ (∃vl : etype(A) • extractInt(e) = Inr (vl))

Case: (∃-I). Assume that pP is of the form ∃x : s •A obtained by an appli-
cation of (∃-I)

Γ �Int aA[v/x]

Γ �Int show(v, a)∃x:s•A
(∃-I)

(2.42)

There are two cases, dependent on whether A is Harrop or not.
Case 1: Assume A is Harrop. Then extractInt(p) is defined to be v.
Also, because A is Harrop, Sk(∃x : s • A) is A, and so Sk(∃x : s •

A)[extractInt(p)/fP ] is A[v/fA]. This means that

Sk(∃x : s •A)[fA/x][extractInt(p)/fA] = A[v/x]

and, by the premise of (2.42),

Γ....
Sk(∃x : s •A)[extractInt(p)/f∃x:s•A]

By repeated application of Lemma 2.5.1, for each G′
i ∈ Γ ′, we can derive

Gi ∈ Γ .
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So, we have
Γ ′
....
Γ....

Sk(∃x : s •A)[extractInt(p)/f∃x:s•A]

This concludes case 1.
Case 2: Assume A is not Harrop. Then extractInt(p) is defined as

(v, extractInt(a))

Also, because A is not Harrop, Sk(∃x : s •A)[extractInt(p)/fP ] is

Sk(A)[fst (extractInt(p))/x][snd (extractInt(p))/fA]

Now, by the IH, there is a proof

Γ ′
....

Sk(A)[v/x][extractInt(a)/fA] (2.43)

Using the (red=) schema, we prove

fst (extractInt(p)) �∗
SML v

fst (extractInt(p)) = v
R1 (2.44)

where R1 is red = [[fst (extractInt(p)); v]; [s]]. Similarly, we have

snd (extractInt(p)) �∗
SML snd (extractInt(a))

snd (extractInt(p)) = extractInt(a)
R2 (2.45)

where R1 is red = [[snd (extractInt(p)); extractInt(a)]; [etype(A)]].
We apply the (subst) schema, setting P to Sk(A)[y/x][extractInt(a)/fA], set-

ting u to be fst (extractInt(p)) and r to be v, obtaining

Γ ′
.... (2.43)

Sk(A)[v/x][extractInt(a)/fA]

.... (2.44)
fst (extractInt(p)) = v

(Sk(A)[v/x][extractInt(a)/fA] ∧ fst (extractInt(p)) = v)
(∧-I)

Sk(A)[fst (extractInt(p))/x][extractInt(a)/fA]
R2 (2.46)

where R2 is (subst)[[Sk(A)[y/x][extractInt(a)/fA]]; [fst (extractInt(p)); v]; [s]].
Then, we apply the (subst) schema a second time, letting P stand for the

statement Sk(A)[fst (extractInt(p))/x][y/fA], setting u to snd (extractInt(p)) and
r to extractInt(a), obtaining the required proof
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Γ ′
.... (2.46)

P [r/y]

.... (2.45)
u = r

(P [r/y] ∧ u = r)
(∧-I)

Sk(A)[fst (extractInt(p))/x][extractInt(a)/fA]
R3

where R3 is

(subst)[[Sk(A)[fst (extractInt(p)/x][extractInt(a)/fA]]];
[snd (extractInt(p)); extractInt(a)]; [etype(A)]]

This concludes case 2 and the case of (∃-I).
Case: (∃-E). Assume that pP is of the form C, obtained by an application

of (∃-E)
Γ1 �Int a∃y:s•A Γ2, u

A[v/y] �Int bC

Γ1, Γ2 �Int select (a) in v : s.u.bC
(∃-E)

(2.47)

So, Γ ′ = Γ ′
1 ∪ Γ ′

2.
There are two cases, dependent on whether A is Harrop or not.

1. If A is Harrop, then extractInt(p) is

(fn v : s => extractInt(b)) extractInt(a)

Because A is Harrop, Sk(A[v/y]) = A[v/y]. So, by the IH, there is a proof
such that

Γ ′
2, A[v/y]....

Sk(C)[extractInt(b)/fC ] (2.48)

Taking this proof, we first apply (⇒-I) followed by (∀-I) to give

Γ ′
2, [A[v/y]]....

Sk(C)[extractInt(b)/fC ]
A[v/y]⇒ Sk(C)[extractInt(b)/fC ]

(⇒-I)

∀v : s •A[v/y]⇒ Sk(C)[extractInt(b)/fC ]
(∀-I)

(2.49)

Because A is Harrop,

Sk(∃y : s •A)[extractInt(a)/f∃y:s•A]
= A[f∃y:s•A/y][extractInt(a)/f∃y:s•A]
= A[extractInt(a)/y]

So, by the IH, there is a proof
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Γ ′
1....

A[extractInt(a)/y] (2.50)

We apply (∀-E) on (2.49), setting v to extractInt(a), and then apply (⇒-E)
on the result, instantiating with (2.50):

Γ ′
2.... (2.49)

∀v : s •A[v/y]⇒ Sk(C)[extractInt(b)/fA]
AC

(∀-E)

Γ ′
1.... (2.50)

A[extractInt(a)/y]
Sk(C)[extractInt(b)/fC ][extractInt(a)/v]

(⇒-I)

(2.51)
where AC denotes the formula

A[extractInt(a)/y]⇒ Sk(C)[extractInt(b)/fC ][extractInt(a)/v]

Because, by definition of the (∃-E) rule, v cannot occur in C, (2.51) is the
same proof as

Γ ′
1, Γ

′
2....

Sk(C)[(extractInt(b)[extractInt(a)/v])/fC ] (2.52)

By application of the (red=) schema, we can obtain

�Int (fn v => extractInt(b)) extractInt(a) = extractInt(b)[extractInt(a)/v]
(2.53)

We then apply the (subst) schema, setting u to be

(fn v => extractInt(b)) extractInt(a)

and r to be extractInt(b)[extractInt(a)/v] and Q to be Sk(C)[y/fC ], thereby
obtaining:

Γ ′
1, Γ

′
2.... (2.52)

Sk(C)[(extractInt(b)[extractInt(a)/v])/fA]

.... (2.53)
u = r

(Q[r/y] ∧ u = r)
(∧-I)

Q[u/y] R

where R is

subst[[(fn v => extractInt(b)) extractInt(a); extractInt(b)[extractInt(a)/v]];
[etype(C)]; [Sk(C)[y/fC ]]]

This is the required conclusion because

Q[u/y] = Sk(C)[((fn v => extractInt(b) extractInt(a)))/fC ]
= Sk(C)[extractInt(p)/fC ]
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2. If A is not Harrop, then extractInt(p) is

(fn v : s => fn xu : etype(A) => extractInt(b))
fst(extractInt(a)) snd(extractInt(a))

By the IH, there is a proof

Γ ′
2, Sk(A)[v/y][xu/fA]....

Sk(C)[extractInt(b)/fC ] (2.54)

To this proof we can apply (⇒-I), followed by two applications of (∀-I),
giving

Γ ′
2, [Sk(A)[v/y][xu/fA]]....

Sk(C)[extractInt(b)/fC ]
Sk(A)[v/y][xu/fA] ⇒ Sk(C)[extractInt(b)/fC ]

(⇒-I)

∀xu : etype(A) • Sk(A)[v/y][xu/fA] ⇒ Sk(C)[extractInt(b)/fC ]
(∀-I)

∀v : s • ∀xu : etype(A) • Sk(A)[v/y][xu/fA] ⇒ Sk(C)[extractInt(b)/fC ]
(∀-I)

(2.55)

Because A is not Harrop,

Sk(∃y : s •A)[extractInt(a)/f∃y:s•A]
= (Sk(A)[fst (f∃y:s•A)/y][snd (f∃y:s•A)/fA])[extractInt(a)/f∃y:s•A]
= Sk(A)[fst (extractInt(a))/y][snd (extractInt(a))/fA]

So, by the IH, there is a proof

Γ ′
1....

Sk(A)[fst (extractInt(a))/y][snd (extractInt(a))/fA] (2.56)

We apply (∀-E) on (2.55), setting v to fst (extractInt(a)), then apply
(∀-E), setting xu to snd (extractInt(a)), and then apply (⇒-E) on the re-
sult, instantiating with (2.56):

Γ ′
2.... (2.55)

AA
AC

(∀-E)

A2 ⇒ C2
(∀-E)

Γ ′
1.... (2.56)

A2

C2
(⇒-I)

(2.57)

where AA denotes the formula
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∀v : s • ∀xu : etype(A) • Sk(A)[v/y][xu/fA]⇒ Sk(C)[extractInt(b)/fA]

AC denotes the formula

A[fst (extractInt(a))/y]⇒ Sk(C)[extractInt(b)/fC ][fst (extractInt(a))/v],

where A2 denotes the formula

Sk(A)[fst (extractInt(a))/y][snd (extractInt(a))/fA]

and where C2 denotes the formula

Sk(C)[extractInt(b)/fC ][fst (extractInt(a))/v][snd (extractInt(a))/xu].

Because, by the definition of the (∃-E) rule, v cannot occur in C, and also
we can assume xu cannot occur in C,

Sk(C)[extractInt(b)/fC ][fst (extractInt(a))/v][snd (extractInt(a))/xu]

is the same formula as

Sk(C)[((extractInt(b)[fst (extractInt(a))/v][snd (extractInt(a))/xu]))/fC ]

and so (2.57) is the same proof as

Γ ′
1, Γ

′
2....

Sk(C)[((extractInt(b)[fst (extractInt(a))/v][snd (extractInt(a))/xu]))/fC ]
(2.58)

We can apply the (red=) schema to obtain

(fn v : s => fn xu : etype(A) => extractInt(b))
fst (extractInt(a)) snd (extractInt(a)) =

extractInt(b)[fst (extractInt(a))/v][snd (extractInt(a))/xu] (2.59)

Recall that extractInt(p) is

fn v : s => fn xu : etype(A) => extractInt(b)
fst (extractInt(a)) snd (extractInt(a))

So, another way of writing the conclusion of the proof (2.59) is

�Int extractInt(p) = extractInt(b)[fst (extractInt(a))/v][snd (extractInt(a))/xu]
(2.60)

So, we can apply the (subst) schema, using (2.59), setting u to be extractInt(p),
setting r to be
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extractInt(b)[fst (extractInt(a))/v][snd (extractInt(a))/xu]

and P to be Sk(C)[y/fC ], obtaining:

Γ ′
1, Γ

′
2.... (2.58)

Sk(C)[y/fC ][extractInt(b)[fst (extractInt(a))/v]
[snd (extractInt(a))/xu]/y]

.... (2.60)
u = r

(Sk(C)[y/fC ][r/y] ∧ u = r)
(∧-I)

P [u/y]
R2

where R2 is

subst[[extractInt(p), extractInt(b)[fst (extractInt(a))/v]
[snd (extractInt(a))/xu]]; [etype(C)]; [Sk(C)[y/fC ]]]

This proves the required conclusion, because

P [u/y] = Sk(C)[y/fC ][extractInt(p)/y]
= Sk(C)[extractInt(p)/fC ]

Case: (⇒-I). Assume that pP is of the form (A⇒ B) obtained by an appli-
cation of (⇒-I)

Γ, uA �Int bB

Γ �Int abstract u. b(A⇒B)
(⇒-I)

There are two cases, dependent on whether A is Harrop or not.

1. Assume that A is Harrop. Then extractInt(p) is extractInt(b). By the IH, we
know that there is a proof of the form

Γ ′, A....
Sk(B)[extractInt(b)/fB ]

because Sk(A) is A. Applying (⇒-I) to this proof, we obtain

Γ ′, [A]....
Sk(B)[extractInt(b)/fB ]

A⇒ Sk(B)[extractInt(b)/fB ]
(⇒-I)

This is the required proof because Sk(A ⇒ B)[extractInt(p)/fA⇒B ] is the
same formula as the conclusion A⇒ Sk(B)[extractInt(p)/fB ].
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2. Assume that A is not Harrop. Then extractInt(p) is fn xu => extractInt(b).
By the IH, we know that there is a proof of the form

Γ ′, Sk(A)[xu/fA]....
Sk(B)[extractInt(b)/fB ] (2.61)

Using the (red=) schema, it is easy to derive

�Int (fn xu => extractInt(b)) xu = extractInt(b) (2.62)

We apply the (subst) schema, using (2.62), setting u to be
(fn xu => extractInt(b)) xu, r to be extractInt(b) and P to be Sk(B)[y/fB ],
obtaining:

Γ ′, Sk(A)[xu/fA].... 2.61
Sk(B)[extractInt(b)/fB ]

.... (2.62)
(fn xu => extractInt(b)) xu = extractInt(b)

(Sk(B)[extractInt(b)/fB ] ∧ u = r)
(∧-I)

Sk(B)[(fn xu => extractInt(b) xu)/fB ]
R1

(2.63)
where R1 is

(subst)[[(fn xu => extractInt(b)) xu; extractInt(b)]; [etype(B)]; [Sk(B)[y/fB ]]]

By definition of extractInt(p), we know that the conclusion of (2.63) can be
written Sk(B)[extractInt(p) xu/fB ]. We apply (⇒-I) on (2.63):

[Sk(A)[xu/fB ]].... (2.63)
Sk(B)[(extractInt(p) xu)/fB ]

Sk(A)[xu/fA]⇒ Sk(B)[(extractInt(p) xu)/fB ]
(⇒-I)

(2.64)

Finally, we apply (∀-I) to (2.64), abstracting over xu, to give

∀xu : etype(A) • Sk(A)[xu/fA]⇒ Sk(B)[extractInt(p) xu/fB ]

This, by the definition of Skolem form, is the required proof.

Case: (⇒-E). Assume that pP is of the form app(a, b)C , obtained by an
application of (⇒-E)

Γ1 �Int aB⇒C Γ2 �Int bB

Γ1, Γ2 �Int app(a, b)C
(⇒-E)

so that Γ ′ = Γ ′
1 ∪ Γ ′

2.
There are two cases, dependent on whether B is Harrop or not.
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1. Assume that B is Harrop. Then

extractInt(p) = extractInt(a) (2.65)

Also, by the IH, we know that there are proofs

Γ ′
1....

B ⇒ Sk(C)[extractInt(a)/fC ] (2.66)

and
Γ ′

2....
B (2.67)

We apply (⇒-E), instantiating (2.66) with (2.67) to give

Γ ′
1.... (2.66)

B ⇒ Sk(C)[extractInt(a)/fC ]

Γ ′
2.... (2.67)

B

Sk(C)[extractInt(a)/fC ]
(⇒-E)

Because of (2.65), the conclusion of this proof is the same as stating
Sk(C)[extractInt(p)/fC ], as required.

2. Assume that B is not Harrop. Then extractInt(p) is (extractInt(a) extractInt(b))
Also, by the IH, we know that there are proofs

Γ ′
1....

∀x : etype(B) • Sk(B)[x/fB ]⇒ Sk(C)[extractInt(a) x/fC ] (2.68)

and
Γ ′

2....
Sk(B)[extractInt(b)/fB ] (2.69)

We apply (∀-E) on (2.66), letting x be extractInt(b), and then apply (⇒-E),
instantiating with (2.67) to give

Γ ′
1.... (2.66)

∀x : etype(B) • Sk(B)[x/fB ]⇒
Sk(C)[extractInt(a)/fC ]

Sk(B)[extractInt(b)/fB ]⇒
Sk(C)[extractInt(a)/fC ]

(∀-E)
Γ ′

2.... (2.67)
Sk(B)[extractInt(b)/fB ]

Sk(C)[extractInt(a) extractInt(b)/fC ]
(⇒-E)

The conclusion of this proof is the same as stating Sk(C)[extractInt(p)/fC ]
as required.
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Case: (∀-I). Assume that pP is of the form use x : s. a∀x:s•A, obtained by an
application of (∀-I)

Γ �Int aA

Γ �Int use x : s. a∀x:s•A
(∀-I)

Because we have assumed that P is not Harrop (so ∀x : s•A is not Harrop),
A must not be Harrop, and extractInt(p) is fn x => extractInt(a).

By the IH, there is a proof

Γ ′
....

Sk(A)[extractInt(a)/fA] (2.70)

First, we use (red=) to derive

�Int (fn x => extractInt(a) x) = extractInt(a) (2.71)

Then, we apply the (subst) schema, using (2.71), setting u to be
(extractInt(p) x), r to be extractInt(a) and P to be Sk(A)[y/fA], obtaining:

Γ ′
.... (2.70)

Sk(A)[extractInt(a)/fA]

.... (2.71)
extractInt(p) x = extractInt(a)

(Sk(A)[extractInt(a)/fA] ∧ u = r)
(∧-I)

Sk(A)[(extractInt(p) x)/fA] R (2.72)

where R is (subst)[[Sk(A)[y/fA]]; [(extractInt(p) x); extractInt(a)]; [etype(A)]].
Applying (∀-I) on (2.72), abstracting over x, gives us the required conclusion

�Int ∀x : etype(A) • Sk(A)[extractInt(p) x/fA]

Case: (∀-E). Assume that pP is of the form specific(a, t)A[t/x] obtained by
an application of (∀-E)

Γ �Int a∀x:s•A

Γ �Int specific(a, t)A[t/x]
(∀-E)

Because we have assumed that P (and so ∀x : s • A) is not Harrop, this
means that A must not be Harrop, and extractInt(p) is (extractInt(a) t)

By the IH, there is a proof

Γ ′
....

∀x : s • Sk(A)[extractInt(a) x/fA] (2.73)

To obtain the required proof, we need only apply (∀-E) over (2.73), instan-
tiating with t, to give
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Γ ′
.... (2.73)

∀x : s • Sk(A)[extractInt(a) x/fA]
Sk(A)[extractInt(a) t/fA]

(∀-E)
(2.74)

This is the required proof, because

Sk(A)[extractInt(a) t/fA]

is the same formula as
Sk(A)[extractInt(p)/fA]

This last case concludes the proof. ��

2.5.3 Extraction from proofs with axioms and schemata

The proof can be extended to include the use of axioms and application of
schemata, if we make the following assumptions.
Assumption 2.3. We assume that, for each proof-term corresponding to an
axiom rule:

Axiom(A)A

there is a function in Σ and a corresponding program in the SML preamble

PKA : etype(A)

such that PKA is a modified realizer of A:

PKA mr A

Then, defining
extractInt(Axiom(A)) = PKA

the proof is extended trivially to include axioms.
Assumption 2.4. We assume that, for each proof-term corresponding to a rule
generated from a schema,

� Schema(N, [ē; F̄ ; t̄; S̄])A

there is a function in Σ and a corresponding program in the SML preamble

�Int PKN [ē;F̄ ;t̄;S̄] : etype(A)

such that
PKN [ē;F̄ ;t̄;S̄] kr A.

Defining
extractInt(Schema(N, [ē; F̄ ; t̄; S̄])) = PKN [ē;F̄ ;t̄;S̄]

the proof extends trivially to include schemata application.
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Example 2.6. We take the modified realizers for instances of the substitution
schema (subst)

�Int q
P [r/y]
1 �Int qu=sr

2

�Int Schema(subst, [[q1; q2];P ; ȳ; Z̄])P [u/y]
(subst)[[P ]; [u; r]; [s]]

to be
PKsubst,[[q1;q2];P ;ȳ;Z̄] = extractInt(q1)[u/y] (2.75)

This is permitted, by extending the proof by induction of Theorem 2.5.3 to
include instances of (subst), with the following additional case. Assuming a
proof ends in (subst)

�Int q1[r/y]P [r/y] �Int qu=sr
2

�Int Schema(subst, [[q1; q2];P ; ȳ; Z̄])P [u/y]
(subst)[[P ]; [u; r]; [s]]

then, by the IH, there is a proof that

�Int Sk(P [r/y])[extractInt(q1[r/y])/fP [r/y]]

which means
�Int Sk(P )[extractInt(q1)/fP ][r/y]

So, by applying (subst) again we have

�Int Sk(P )[extractInt(q1)/fP ][r/y] u =s r

�Int Sk(P )[extractInt(q1)/fP ][u/y]
(subst)[[P ]; [u; r]; [s]]

This maybe be rewritten to be the required conclusion, by (2.75),

�Int Sk(P )[PKsubst,[[q1;q2];P ;ȳ;Z̄]/fP ]

Remark 2.19. It is possible to define modified realizers for proof-terms corre-
sponding to induction schema over recursive data types in a systematic way.
However, we do this in Part IV (Chapter 9), for a constructive logic about
structured specifications. That work is a more sophisticated treatment of the
ideas here, and can be brought down to the simple, single signature treatment
of ADT given here. For the moment, we simply give an example for integer
induction.

Example 2.7. A definition of the sort int (integers), constructed from a constant
0 : int and successor function suc : (int→ int) is associated with the induction
schema

�Int aX[0/z]∧(∀x:int•X[x/z]⇒X[suc(x)/z])

�Int Schema(recInt, [a; [X]])∀y:int•X[y/z]
(recInt[[X]])
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an application of this schema to a formula P is of the form

�Int aP [0/z]∧(∀x:int•P [x/z]⇒P [suc(x)/z])

�Int Schema(recInt, [a; [P ]])∀y:int•P [y/z]
(recInt[[P ]])

We define the function PKrecInt[[P ]] to be shorthand for the SML program

let rec rho n y =
begin match y with
0 => fst(n)
| x => snd(n)(x− 1)(rho n (x− 1))

Eval can be defined appropriately to correctly model the evaluation of this
program in SML, so that PKrecInt[[P ]] is a modified realizer of ∀y : int•P [y/z].
Rather than proving this, we shall simply assume this is true. See Part IV (Chap-
ter 9) for a systematic treatment of modified realizers for induction schemata.

It immediately follows from this Theorem 2.5.3 and Assumptions 2.3 and
2.4 that logical proofs yield modified realizers of the proved formulae.

Corollary 2.5.1 (Logical proofs yield modified realizers). If there is a
proof ∅ �Int pF then

extractInt(p) mr F

2.5.4 Relation between proofs and programs

It can be shown that the extraction results of this section, together with the
strong normalization result of the previous section, lead to the following situa-
tion:

LTT (Int) : t1
S �̂Int � tS2

SML : p1 mr S

extractInt

� �̂SML� p2 mr S

extractInt

�

Thus, in our state-of-the-art approach, proofs and programs are separate enti-
ties, related by extraction and a notion of realizability.
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2.6 Example: Password checking system

We illustrate our concepts with the following example about an email service.
We consider a service that hosts email accounts for a number of users. When

a user joins the service, he/she is required to define a new numerical password.
We make the following assumptions concerning the password correctness func-
tions for a new user joining, or logging onto, the system:

• Password numbers must be 4 digits long.
• If the number chosen is not of the right length, the system should output

a response message, asking the user to select a new number of the correct
length.

• If the number is of the correct length, then the system should output a
response message to this effect.

We shall model the system by specifying these assumptions, defining notions of
acceptable lengths of passwords and the correct responses for given passwords.

We model aspects of the password checking system by assuming the following
functions and predicates to be in ADT:

• We assume appropriate sorts and function symbols for the booleans, bool,
natural numbers, nat, and strings string.

• We define a new boolean function okLength(x) that will output true if the
password number (x) is of the required length

• A new predicate OkPwd(x) holds over a number, if the number is an accept-
able password (that is, if okLength(x) = true).

• A new predicate ValidMsg(x, y) that holds if a string y is a correct response
message for the input of a password number x.

We take the following axioms in ADT to model our domain assumptions:

okLength(x) = true ⇒ OkPwd(x) (2.76)
okLength(x) = false⇒ ¬OkPwd(x) (2.77)

OkPwd(x)⇒ ValidMsg(x, ‘Password acceptable’) (2.78)

¬OkPwd(x)⇒ ValidMsg(x, ‘Please choose a
password of correct length’) (2.79)

The first two axioms tell us that a password number is acceptable if, and only
if, it is of an acceptable length. The second two axioms define the appropriate
response message strings for an acceptable password and for an unacceptable
password.

Our goal formula will be that, given any password as input, the system will
always output an appropriate response message. This is specified as follows:

� ∀x : nat • ∃y : string •ValidMsg(x, y) (2.80)

The Skolem form of the formula
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A = ∀x : nat • ∃y : string •ValidMsg(x, y)

is
Sk(A) = ∀x : nat • V alid(x, fA(x))

Thus, by the definition of modified realizability, the theorem can be viewed as
a specification of a function fA that outputs an appropriate response message
for a given password.

We assume the following axiom about the function okLength(x):

∀x : nat • okLength(x) = true ∨ okLength(x) = false (2.81)

By our Assumptions 2.2 and 2.3, we assume there is a realizing term

PKA : (nat→ Unit|Unit)

in the signature of ADT such that

PKA mr A

where A stands for the axiom ∀x : nat • okLength(x) = true ∨ okLength(x) =
false. That is to say, we assume PKA is present as a function symbol in the
SML preamble and is defined with the following operational semantics

Eval(PKA(x)) =
{

Inl (()) when okLength(x) = true
Inr (()) when okLength(x) = false

It is easy to see that a term with this semantics will produce the required
modified realizer of (2.81): when the length of the password is acceptable, PKA

will be equal to Inl (()), and Inr (()) otherwise.
We derive (2.80) by reasoning over the possible cases that either

okLength(x) = true or okLength(x) = false.
Assuming the first case corresponds to the use of a proof-term variable

uokLength(x)=true

in a derivation of the form

....
pA2
7

....
pA1
6 uokLength(x)=true

(Ass-I)

app(p6, u)OkPwd(x)
(⇒-E)

app(p7, app(p6, p5))ValidMsg(x,‘Password acceptable’)
(⇒-E)

show(‘Password acceptable’, app(p7, app(p6, p5)))∃y:string•ValidMsg(x,y) (∀-I)
(∃-I)

use x : nat. show(‘Password acceptable’, app(p7,

app(p6, p5)))∀x:nat•∃y:string•ValidMsg(x,y)

(2.82)
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where the proof-term pA1
6 corresponds to an instantiated axiom of ADT, which

when written

specific(ax(∀x : nat • okLength(x) = true⇒ OkPwd(x)), x)

with type okLength(x) = true ⇒ OkPwd(x). The proof-term pA2
7 also corre-

sponds to an instantiated axiom of ADT written in full as

specific(ax(∀x : nat •OkPwd(x)⇒ ValidMsg(x, ‘Password acceptable’)), x)

with type OkPwd(x)⇒ ValidMsg(x, ‘Password acceptable’)
Similar reasoning over an assumption variable vokLength(x)=false will give

a proof-term of the form

vokLength(x)=false
(Ass-I)

....
p
ValidMsg(x,‘Please choose a password of correct length’)
8

show(
(

‘Please choose a
password of correct length’

)
, p8)∃y:string•ValidMsg(x,y) (∀-I)

(∃-I)

use x : nat. show(
(

‘Please choose a
password of correct length’

)
, p8)∀x:nat•∃y:string•ValidMsg(x,y)

(2.83)
where p8 is a proof-term involving manipulation of our axioms.

Finally, by applying (∨-E) over (2.81), (2.82) and (2.83), and then applying
(hide) will give (2.80), as required

� p∀x:nat•∃y:string•ValidMsg(x,y)

with proof-term

p = case Axiom(A) of

inl(u).use x : nat. show(‘Password acceptable’, app(p7, app(p6, p5))),
inr(v).use x : nat. show(‘Please choose a password of correct length’, p8)

The proof-term encodes constructive information obtained from the (∃-I)
steps used in the proof — in particular, the witness string y for a valid message
such that ValidMsg(x, y) given a password number, x, depending on the length
of the password number.

We can apply Theorem 2.5.3 to obtain the function extractInt(q):

fn x : nat =>
match PKA(x) with

Inl(xu) => ‘Password acceptable’,
Inr(xv) => ‘Please choose a password in correct range’

such that
�Int ∀x : nat • V alid(x, (extractInt(q)x)) (2.84)

as required.
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Remark 2.20. We can see that (2.84) holds for any password input a, using Int
and the axioms of ADT. For example, if a is such that okLength(a) = true,
then, by the operational semantics for PKA,

extract(q)(a) �̂SML ‘Password acceptable’

Consequently, by schema (red=)

�Int extract(q) = ‘Password acceptable’

By the axioms (2.76) and (2.78) and the schemata and (subst), we know that

�Int ValidMsg(a, ‘Password acceptable’)

But then, by applying (subst) again, we arrive at

�Int V alid(a, (extractInt(q)a))

This is (2.84), instantiated with a, as required.
The advantage of our extraction methodology is that functions such as

extractmod(q) are synthesized automatically from proofs, and their correctness
as realizers is guaranteed by Theorem 2.5.3. There is no need for a further
verification proof of function correctness.
Remark 2.21. Effective reasoning and program synthesis is dependent upon an
adequate representation of the target domain. In the approach of this chapter,
we axiomatize our domain using a single, unstructured specification ADT. This
approach is adequate for working with domains of small scale.

However, at the medium and large scales, it can be difficult to define, com-
prehend and maintain domain specifications without some notion of composi-
tionality and hierarchy, instead of working within a single, unstructured theory
ADT, In Part IV, Chapters 7–9, we shall return to this domain. We shall spec-
ify and reason about the domain using structured specifications. That work has
the advantage over the approach of this chapter that we can understand our
domain using a compositional hierarchy of related theories. Consquently, we
can utilize divide-and-conquer approaches to specifying and reasoning about a
domain.

2.7 Discussion

There always remains the question of whether the proofs that we use are cor-
rect and whether the software we use preserves correctness. We are almost as
vulnerable as any mathematician concerning the correctness of a proof. We say
“almost” because our proofs are formalized and therefore checking the steps is
a mechanical process. However, the extraction process uses software that may
be unreliable. We minimise the effects of this because our procedures are simple
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and essentially syntactic. Ideally we would run the process on our own software
to check it, but this is, at present, a daunting task.

In comparison to näıve functional program synthesis approaches, the ad-
vantages of the Curry–Howard protocol in the context of functional program
synthesis are practical. We have chosen to use a LTT based on a first-order,
many-sorted logic, because this is an easy type of deductive system to use. Ad-
ditionally, adopting a loose coupling between terms and sorts of the LTT and
programs and types of SML promotes a natural conceptual distinction: the logic
is used for reasoning about programs, while SML is used for programming.

In some cases the protocol, or something similar, appears to be necessary in
order to be able to define a simple Curry–Howard style extraction mechanism
for more complicated logical systems. In the next two parts of this monograph,
we will examine this assertion, for imperative program synthesis and Curry–
Howard style synthesis over the proof system for reasoning about algebraic
specifications. Without the protocol, these results would have been difficult to
achieve.

This chapter serves as a reference for the kind of extraction that the Curry–
Howard protocol should achieve within the familiar domain of functional pro-
grams synthesized from constructive proofs. The reader will therefore find it
useful to refer back to this chapter for comparisons when we formally define the
protocol and investigate less familiar domains.
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The Curry–Howard Protocol

In this chapter, we define the Curry–Howard protocol, a framework for general-
izing state-of-the-art (SOA) proofs-as-programs. The protocol specifies a min-
imal set of properties to be satisfied by a logic and programming language. If
these properties are satisfied for a new logic and programming language, then
we claim that the Curry–Howard isomorphism and SOA proofs-as-programs
have been generalized.

The protocol is defined by identifying aspects of SOA proofs-as-programs
that are relevant to program extraction. These relevant aspects are taken from
examination of the previous chapter’s functional synthesis technique. This is
acceptable as that work is a simple example of SOA proofs-as-programs.

The protocol, of course, is useful insofar as it is applicable. In the next two
parts of this monograph we shall apply the protocol to the synthesis of imper-
ative and structured program synthesis. That work forms a basis for justifying
the utility of the results of this chapter.

The chapter proceeds as follows:

• Section 3.1 provides a discussion on how SOA approaches should be gener-
alized, including some arguments of what constitutes a good generalization.

• Section 3.2 uses that work to formally define the Curry–Howard protocol.
• Section 3.3 defines a process for application of the protocol to a given logic

and programming language.
• Section 3.4 relates our results to the rest of the book and discusses some

related work.

3.1 From ontology to protocol

We wish to define what makes a generalization of SOA proofs-as-programs.
Moreover, we want this generalization to be “good.”
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Rôle Purpose Relationships with other rôles
Logic Represent and make asser-

tions about a problem space.
Logical statements are determined to
be true or false by proofs; Logic should
represent aspects of program behav-
ior, by specifying required realizers,
programs whose behavior satisfies the
specification in some fashion.

Proofs Show truth and falsity of as-
sertions.

Proofs are made using a logic to de-
rive true assertions; Logical proofs are
transformed into programs.

Programming
language

Write programs that
perform computations;
program behavior forms the
basis of the problem space.

Aspects of programs are represented as
mathematical objects; programs are ex-
tracted from proofs.

Fig. 3.1. Rôle-based ontology of SOA proofs-as-programs.

To generalize a concept is to define what is essential to its being, and then
give a means of preserving this essence to form different concepts. In both
philosophy and knowledge representation research, this essence is sometimes
referred to as an ontology: the entities that are presumed to exist, and their
interrelationships [Gru93].1

In any problem space it is possible to give a bad generalization. A good
generalization of a concept can be aided by providing an abstract, rôle-based
ontology. This kind of ontology identifies important rôles and relationships, but,
as an abstraction, does not include the players of rôles. A good generalization
of the concept preserves the rôles and relations, but permits possibly different
players.
Example 3.1. For example, the notion of “marriage” involves an ontology con-
sisting of husband and wife rôles. An anthropologist might compare a monoga-
mous society with a polygamous society. He would take the familiar concept of
monogamy and generalize it to polygamy. This act of generalization preserves
the rôle-based ontology. It is understood and unquestioned by fellow anthro-
pologists by virtue of the fact that the rôles of husband and wife are preserved
(albeit now adapted for more than two players).

We believe that SOA approaches can be characterized by a rôle-based on-
tology, which is preserved by good generalizations. Examining the SOA method
of the previous chapter, we identify several important rôles and relationships,
which are displayed in Fig. 3.1. The three important rôles in program extraction
are those of logic, proofs, and programming language.

As described in the review of the introductory chapter, SOA proofs-as-
programs consists of several competing systems and methods. Due to its min-
1 Ontologies have also been known as a notational, syntactic expression of so-called

conceptualizations [GN87].
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imal nature, our rôle-based ontology is common to all such approaches. This
can be easily seen by examining each approach in turn — however, for reasons
of brevity, we omit such a review.

The rôles of logic, proofs and programming language are central to all SOA
approaches: logical proofs of specifications can be transformed into programs
that satisfy specifications. The main relations between these rôles arise from
realizability and extraction:

• logical statements form specifications of program behavior, in a sense defined
by a realizability relation between programs and statements. Realizability
formalizes how a statement is true of program behavior.

• extraction of realizers relates the rôles of proofs and programs by obtaining
realizers from proofs of statements.

We place no restriction on the choice of the logic or programming language.
This is because we want to generalize proofs-as-programs to logics and lan-
guages other than variants of intuitionistic logic and functional programming
languages.
Remark 3.1. Alternative rôle-based ontologies can be formed, but we assert
that, at least, they would involve the rôles we have identified. This is true
by inspection of SOA approaches reviewed in Chapter 1 and those given in
Chapter 2. Other rôles and relations could be added, but we believe that this
would strengthen the ontology to an undesirable extent, making it difficult to
use for a good generalization.

Remark 3.2. The ontology is more complicated than that of a näıve proofs-
as-programs method. näıve proofs-as-programs involve a single type theory for
defining algebraic theories, specifying programs, proving theorems and writing
and running programs. Consequently, näıve approaches effectively combine the
three rôles of Fig. 3.1 into a single rôle.

Note that the rôles are not usually made explicit in SOA approaches to
functional program synthesis. Some proofs-as-programs involve powerful higher-
order calculi in which the players of these rôles are represented in the same
language.
Example 3.2. For example, the Nuprl type theory [BC85, CMH86] is often used
for the rôles of logical reasoning and representing mathematical objects. The
subset of Nuprl that corresponds to the simply typed lambda calculus is then
used to play the rôle of a programming language [Sas86]. Programs, formulae,
and proofs are all mathematical objects that may be predicated over in formu-
lae. This approach involves a coincidence between mathematical objects, logical
statements, and formal proofs.

However, we claim that, given any SOA method, even if some players are
written in the same language, the three rôles are distinct for the purposes of
program extraction, and may be treated as distinct to form a good generaliza-
tion.
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Rôle Domain in the Curry–
Howard protocol

Properties of domain

Logic Natural deduction system A formal system that defines a logical
calculus.

Proofs Logical type theory
(LTT)

A type theory that enables encoding of
proofs in the logical calculus, accord-
ing to the Curry–Howard isomorphism:
types denote statements, terms denotes
proofs, and type inference corresponds
to logical inference.

Programming
language

Computational type
theory (CTT)

A type theory for the programming lan-
guage, equipped with an operational
semantics.

Fig. 3.2. The rôles of the ontology and their corresponding domains in the Curry–
Howard protocol.

Example 3.3. In the Nuprl approach, when a term is treated as a proof, its rôle is
to derive logic statements and be transformed into programs, while, when a term
is treated as a program, its rôle changes to performing computations and being
extracted from proofs. The players of the rôles are identified in the epistemology
of the theory because they are taken from the same domain. Nevertheless, the
rôles themselves remain separate.

So, while we accept that a SOA approach may involve an epistemic identifi-
cation of some rôles, we believe that an ontological demarcation is fundamental.

3.2 Formalizing the ontology

The ontology of the previous section was given in English. To use it as a guide
for generalizing proofs-as-programs it is useful to explain the rôles and rela-
tions formally. In this way we can specify when the ontology is preserved by
a logic and programming language. Hence, it will show precisely when SOA
proofs-as-programs may be generalized. Our formalization will be given by a
framework that represents the rôles and relationships of the ontology. We call
this framework the Curry–Howard protocol.

To define the protocol, we need to specify the formal counterparts of the
entities of Fig. 3.1: domains for representing the rôles and domain relationships
that correspond to rôle relationships.

The rôles and the names of their corresponding domains are listed in Fig. 3.2.
Proofs and programs both find natural representation in two distinct type the-
ories:

• Type theory is ideal for denoting a logic with explicit representation of
proofs. Proof-theoretic presentations of logics are often given in a type the-
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ory, where dependent products and sums are used to represent universal
quantification and constructive existential quantification.

• All commonly used programming languages can be presented as type theo-
ries. Type inference rules determine how types of programs are deduced by
a compiler. An accompanying operational semantics is given over the terms
that defines how compiled programs are to be executed.

We now formally define the rôles and their inter-relationships.

3.2.1 Type theories

We will use the following broad definition of a type theory.

Definition 3.2.1 (Type theory). A type theory is of the form

TT = 〈Terms(TT ), T ypes(TT ),�TT , (:), T IR〉
consisting of terms, Terms(TT ), and types, Types(TT ), where

• Terms(TT ) and Types(TT ) are sets of terms and types with recursive gram-
mars.

• We assume Terms(TT ) contains a distinguished subset of variables,
V arTerms(TT ).

• A binary type judgement relation (:) holds between terms and types.
• A type inference relation �TT holds between a set of type judgements for

variables Γ = {xi : Si}i=1,...,n (xi ∈ V arTerms(TT ) and Si ∈ Types(TT ))
(called a type context) and a single judgement for a term t : S (t ∈ Terms,
S ∈ Types). We call a relation of the form

Γ �TT t : S

a type inference.
• The relation � is defined by a set of type inference rules, TIR, consisting of

rules from several (premise) type inferences to a single (conclusion) inference,
of the form

Γ1 �TT t1 : S1 . . . Γn �TT tn : Sn

Γ �TT t : S
(R)

where (R) is a unique name of the rule.
We permit SIR to contain an infinite number of rules.
Given t1, t2 ∈ Terms such that, for any context Γ ,

Γ � t1 : S ⇔ Γ � t2 : S

we say that t1 and t2 have the same type S.
We will write tΓ : S to denote the term t and the fact that Γ � t : S can
be derived, and call t well-typed in context Γ . We will simply write t : S for
tΓ : S if the context Γ can be unambiguously inferred.

• We require that �TT is defined so that every term t ∈ Terms(TT ) is well-
typed.
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3.2.2 Logic

We provide a very general definition of a logic, consisting of formulae and rules
for proving true formulae, based on Gabbay’s notion of a deductive system in
[Gab96].

Definition 3.2.2 (Natural deduction system). A natural deduction system

D = 〈Formulae(D),�D, DR〉
where

• Formulae(D) is a set of well-formed statement formulae, generated by a
recursive grammar, to be reasoned with in D.

• �D is a relation that is defined between lists of assumption formulae Γ =
{G1, . . . , Gn} (Gi ∈ Formulae(D)) and a single conclusion formula C ∈
Formulae(D),

Γ �L C

Such a relation is called an inference. This relation is defined by a set of
deduction rules DR, consisting of rules from several (premise) inferences to
a single (conclusion) inference, of the form

Γ1 �D F1 . . . Γn �D Fn

Γ �D F
(R)

where (R) is the unique name of the rule.
We permit DR to contain an infinite number of rules.

Example 3.4. Propositional logic, Prop, is one of the simplest logics that qualify
as a deduction system, according to this definition. Let ESig be the empty
signature (consisting of an empty set of terms, sorts and rules). Then we define
Formulae(Prop) to be well-formed formulae constructed by:

• A set of basic propositions, Pred(Prop), that are treated here as predicates
that take no arguments. We set V arPred(Prop) to be the empty set.

• The connectives, ConnProp = {∧,¬,∨,⇒}, with the obvious arities.
• There are no quantifiers: QuantProp = ∅.
There are a finite number of rules. Some of the rules are as follows.

Γ � A
Γ � A ∨B

Γ � B
Γ � A ∨B � A ∨ ¬A

Γ � ¬¬A
Γ � A

The soundness and completeness of this presentation may be proved with re-
spect to a truth table semantics.
Example 3.5. The intuitionistic logic of the previous chapter is an example of
a deduction system.

Well-formed formulae are built from the usual connectives and quantifiers,
with predicates applying over elements of some signature.
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The rules of the logic are the usual introduction and elimination rules of
intuitionistic logic, together with axioms and schema for defining an algebraic
theory over the logic’s signature.
Example 3.6. Schemata are a common way of generating infinite rules for first-
order logics, to simulate higher-order quantification over predicates.

For instance, to axiomatize the natural numbers in a first-order classical or
intuitionistic logic, we require an induction schema. In a deduction system, it
may be written as a parametrized rule with predicate variable X

Γ � X(0) ∧ ∀n : nat •X(n)⇒ X(succ(n))
Γ � ∀x : nat •X(x)

(ind Nat[X])

The parametrized rule is to be regarded as shorthand for an infinite set of rules

Γ � P (0) ∧ ∀n : nat • P (n)⇒ P (succ(n))
Γ � ∀x : nat • P (x)

(ind Nat[P ])

for each predicate P available to the logic.
Example 3.7. Girard’s Intuitionistic Linear Logic [Gir87] is an example of a
natural deduction system. We describe the multiplicative fragment, MLL, as
presented in [BBHdP93]. Well-formed formulae, Formulae(MLL), are built
from predicates that take no arguments. So, similar to Prop, we can take the
signature of LL to be the empty signature, ESig. Formulae Formulae(MLL)
are defined from

• A set of basic propositions Pred(MLL) that are treated here as predicates
that take no arguments. There is a designated proposition I ∈ Pred(MLL).
We set V arPred(MLL) to be the empty set.

• The connectives, ConnMLL, consist of
— ⊗,−◦, !, where the first two connectives are binary, the last is unary, and
— an infinite set of superscript indices, ()n (n a natural number), that

apply to the formulae, Formulae(MLL), used to uniquely identify as-
sumptions in rules.

• There are no quantifiers: QuantProp = ∅.
Some of the rules are as follows.

Ax � A
(Ass-I)x

Γ1 � A Γ2 � B

Γ � A⊗B
(⊗-I)

Γ1, A
x � C Γ2, B

y � C

Γ � C
(⊗-E)(x,y)

∆1 �!A1 . . . ∆n �!An !Av1
1 , . . . , !Avn

n � B

∆1, . . . , ∆n �!B (Promotion)n

Γ �!A ∆ � B
Γ, ∆ � B

(Weakening)
Γ, Ax � B

Γ � A−◦B (−◦-I)x
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where x, y range over natural numbers. Observe that (Ass-I)x, (⊗ − E)(x,y),
(Promotion)n and (−◦-I)x, denote an infinite set of rules, for each value of x
and y. By associating indices with assumption formulae, the last rule tells us
that we may only discharge one assumption from a deduction to form a linear
implication.

3.2.3 Logical type theory

A logical type theory is a type theoretic presentation of a particular deduction
system. We provide a very flexible definition, preserving relations between logic
and proof rôles identified in the ontology of Fig. 3.1. These constraints form
a generalization of the Curry–Howard isomorphism: the types of the LTT are
formulae of the logic; terms encode the steps to derive their types, and a re-
duction relation can be assumed over terms, defining a normalization strategy
over proofs. When a theorem can be proved in the logic, there is a term in the
theory that has the theorem as a valid type, and vice versa.

Definition 3.2.3 (Logical type theory, LTT). A logical type theory (LTT)
for a deduction system L is of the form

LTT (L) = 〈PT (L), Formulae(L), (.)(.),�L, PTR, �〉
with

〈PT (L), Formulae(L), (.)(.),�L, PTR〉
forming a type theory (see Definition 3.2.1) where PT (L) are terms (called proof-
terms), Formulae(L) are taken as types, (.)(.) is a type judgement relation, and
�L is a type inference relation defined by rules from PTR. We assume

• the set of proof-terms PT (L) has a distinguished set of variables V arPT (L),
• PT (L) includes a lambda calculus,
• the type judgement relation, written as a superscript, (p)(T ), defined between

proof-terms of p ∈ PT (L), and the formulae T ∈ Formulae(L) of L.
• We permit PTR to contain an infinite number of rules.
• There is a normalization relation �̂, defined over proof-terms of PT (L), gen-

erated as the transitive closure of a one-step reduction relation �. The re-
lation � is defined by a set of rules over proof-terms

p1 � p2

We require that:
— Normalization preserves the typing of proof-terms, so that

Γ �PT (L) pA and p1 � p2 entails Γ �PT (L) pA
2 .

— The normalization relation is strongly normalizing: that is, for each
proof-term p1, every sequence of one-step reductions is finite, terminating
in a term pn: p1 � p2 � . . . � pn.
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— The relation satisfies the Church–Rosser property: for any proof-terms
p, p1 and p2, such that p � p1 and p � p2, there must be a common term
p3 such that p1 � p3 and p2 � p3.

Example 3.8. Intuitionistic many-sorted predicate logic has several logical type
theories, one of which was presented in the previous chapter. Martin-Löf’s
constructive type theory [ML84, ML85], Coquand’s Calculus of Constructions
[MLM90], or Luo’s Extended Calculus of Constructions [Luo94] are other pos-
sibilities.

In all these theories, the normalization relation corresponds to removal of
redundant introduction/elimination rule pairs in intuitionistic proofs.

If a type theory is a LTT for a deduction system, then we say that the
Curry–Howard isomorphism has been adapted for the deduction system and
type theory.
Example 3.9. There are several type theories proposed to adapt the Curry–
Howard isomorphism to classical predicate logic: see, for instance, [Gri90,
Mur91, Par93, BS93, BS95b, BS95a, Sch99b]. Inspection of these systems shows
that each forms a LTT in our sense for classical logic.
Example 3.10. A new logic was defined by Nakano [Nak94], with connectives
that enable explicit reasoning about catch-and-throw mechanisms. A logical
type theory was also given that represents proofs according to the style of the
Curry–Howard isomorphism.
Example 3.11. Many authors have showed how Girard’s Intuitionistic Linear
Logic [Gir87] can be associated with a logical type theory.

We briefly sketch the presentation of [BBHdP93] as a logical type theory
for the multiplicative fragment. The deduction system is the MLL described in
Example 3.7. The proof-terms consist of an extension of the lambda calculus.
Some of the type inference rules are as follows.

XAx � XA
(Ass-I)x

Γ1 � eA Γ2 � fB

Γ � e⊗ fA⊗B
(⊗-I)

Γ1 � eA⊗B Γ2, X
Ax

, Y By � fC

Γ1, Γ2 � let e be x⊗ y in fC
(⊗-E)(x,y)

∆1 � e!A1
1 . . . ∆n � e!An

n x
!Av1

1
1 , . . . , x

!Avn
n

n � fB

∆1, . . . , ∆n, Γ � promote e1, . . . , en forx1, . . . , xn in f !B
(Promotion)n

Γ � e!A ∆ � fB

Γ, ∆ � discard e in fB
(Weakening)

Γ, XAx � eB

Γ � λXAx

.e
A−◦B (−◦-I)x

where x, y range over natural numbers. Observe that (Ass-I)x, (⊗-E)(x,y) and
(−◦-I)x denote an infinite set of type rules, for each value of x and y. The nor-
malization relation � is defined by the usual lambda reduction rules augmented
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with new rules for the new proof-terms. For instance, one of the new rules is

discard (promote e1, . . . , en for x1, . . . , xn in t) in u �

discard e1 in(. . . (discard en in u) . . .)

This rule corresponds to normalizing logical proofs that involve (Promotion)n

rules followed by the (Weakening) rule.

3.2.4 Computational type theory

The computational type theory (CTT) should have a simple definition because
we wish to accommodate as wide a range of programming languages as possible.

Definition 3.2.4 (Computational type theory, CTT). A computational
type theory (CTT) is a type theory (see Definition 3.2.1) of the form

C = 〈Term(C), Type(C), :,�C, T IR〉

where

• the set of terms, Term(C), defines a set of programs,
• the set of types, Type(C), defines a set of types for programs,
• typing judgements, written t : T , hold between programs and types accord-

ing to the type inference relation �C and the rules TIR.

Remark 3.3. Observe that imperative languages can be included as computa-
tional type theories according to this definition.

3.2.5 The Curry–Howard protocol

The three rôles now associated with formal domains, and the relation between
logical calculus and type theory having been defined, it remains to formalize
the relationships pertaining to extraction. This will complete the formalization
of the rôle-based ontology of Fig. 3.1, and provide us with the Curry–Howard
protocol.

Recall that the three rôles have the following (circular) inter-relationships:
aspects of program behavior are represented in the logic, logical statements
are represented as formal proofs, and formal proofs may be transformed into
programs.

We have already formalized the relation between logic and proofs.
From the perspective of program extraction, the most important relationship

is that between the logic and programming language. This requires that:

• A formula of the logic can specify the behavior of a program as a realizer of
the formula.

• There is a transformation of proofs of specifications into realizing programs.
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Formalization requires

• a realizability relation to be defined between formulae of programs of the
CTT and the LTT, and

• a program extraction and optimization map from proofs of the LTT to
programs of the CTT such that, given a proof of a specification, the extracted
program should realize the specification.

The protocol follows from these observations.

Definition 3.2.5 (The Curry–Howard protocol). The Curry–Howard pro-
tocol holds between a logical type theory, L, and computational type theory, C,
when

1. There are extraction maps, etype, from formulae of L to types of C and
extract from proof-terms of L to programs of C,

extract : PT (L)→ Term(C)
etype : Formulae(L)→ Type(C)

such that, given a proof d ∈ PT (L), such that

Γ � dA

then extract(d) is in C and is of type etype(A).
2. There is a realizability relation r between programs and formulae, such that,

for any proof
∅ �L pA ∈ PT

it is true that
extract(p)rA

Remark 3.4. The concepts of the protocol are related according to the following
diagram (with tS denoting a proof-term t of S in the logical type theory):

LTT : t1
S normalizes to � tS2

CTT : p1 r S

extract

� ≡S � p2 r S

extract

�

where p1 ≡S p2 holds between two programs when both p1 r S and p2 r S.

3.3 Using the protocol

We now give a process for using the protocol to adapt proofs-as-programs to
new contexts. The process involves the following steps:
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1. Define a signature and a logical calculus that involves the signature. This
might involve issues that are orthogonal to the protocol — e.g., finding a
semantics for the calculus and proving soundness and completeness.

2. Define a logical type theory for the logical calculus. Again, other important
properties that are not part of the protocol may need to be proved, such as
the Church–Rosser theorem and strong normalization for the LTT’s proof-
terms.

3. Identify a programming language and describe it by means of a computa-
tional type theory.

4. Prove the Curry–Howard protocol to hold over the domains.

We will refer to this process as protocol application.

3.4 Discussion

In the next chapters, we will use the protocol to adapt the Curry–Howard iso-
morphism and SOA proofs-as-programs to extracting imperative and structured
programs from proofs.

This work will serve as an example of why the protocol is a useful and
natural generalization of proofs-as-programs to new contexts.

In particular we shall see how the ontology of the protocol facilitates a more
natural approach to adaptation than might otherwise be the case.

For example, the advantage of demarcating proofs from programs is more
apparent in the imperative case of the next part than in the familiar constructive
case. In Part II, we give a LTT for reasoning about side-effects and return values
of imperative SML programs. The underlying calculus is a constructive version
of the Hoare Logic with a natural deduction presentation. We then define an
extract map from the LTT to an imperative CTT that preserves the protocol,
and allows us to extract imperative programs from proofs of specifications.

Identification of domains would mean designing a unifying language in which
the signature, CTT and LTT type theories could all be written. Any resulting
LTT would have to be equipped with the CTT’s imperative operational se-
mantics, with a call-by-value evaluation strategy over function applications.
This semantics would coincide in some way with the LTT’s proof-normalization
rules. The calculus of the LTT would be nonstandard, and would be difficult to
learn and use. In contrast, distinguishing between the LTT and the CTT en-
ables a logical calculus for reasoning about imperative programs that is closer
to established logics.

Similar remarks can be made for the adaptation of Part III for synthesis of
functions for structured specifications and structured programs.

To the best of our knowledge, no previous work has been done in identifying
a framework for generalizing SOA proofs-as-programs.

In the area of type theory, Zhaohui Luo’s Extended Calculus of Constructions
(ECC, [Luo94]) has a similar philosophy to our framework. The ECC provides a
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predicative universe, Prop, to represent logical propositions and a Martin-Löf-
style impredicative universe hierarchy to represent programs. As in Martin-Löf,
the impredicative universes are open, so the same comparison holds. Like our
protocol, the ECC has a similar division of labor between proving properties
of programs (in Prop) and creating new programs and types (in the universe
hierarchy). The ECC was designed to provide a unified framework for the two
(recognized) separate tasks of logical reasoning and program development but
not with program synthesis in mind. This means that in the ECC there is no
notion of a simplifying extraction map between terms that represent proofs and
program terms — they are identified.

We have presented the Curry–Howard protocol in an informal metalogic.
Anderson [And93] used the Edinburgh Logical Framework (ELF) to provide a
similar relationship between proofs in a logical type theory and programs in
a computational type theory. That work was only concerned with constructive
synthesis of functional programs, and in particular with defining relationships to
obtain optimized programs within ELF. However, representations of optimized
programs are not added to the logical type theory. Our metalogical results might
benefit from a similar formal representation.



Part III

Imperative Proofs-as-Programs



III

Overview

Concurrent to the development of the proofs-as-programs paradigm has been
research on the Hoare logic and related systems for the specification and synthe-
sis of imperative and object-oriented programs. In this part of the monograph
we combine the two approaches to synthesize imperative programs with return
values.

Imperative programs involve both side-effects and side-effect-free return val-
ues. For instance, the SML program

s :=!s ∗ 3; !s ∗ 2
involves a side-effect producing assignment statement, s :=!s ∗ 3, followed by
the return value !s ∗ 2. In many popular imperative languages (e.g., C# with
delegates, C++ with STL, Eiffel with Agents, SML or LISP) such return val-
ues are potentially complex, involving higher-order functional aspects that are
difficult to program correctly.

The goal of this part is to specify, reason about, and synthesize both aspects
of imperative programs — side-effects and functional return values.

Our approach is as follows.
We use a version of Hoare logic to synthesize the side-effect producing aspect

of a program, specified in terms of pre- and post-conditions. For instance, the
formula

sf > si

specifies a side-effect where the final value of state s, denoted by sf , is greater
than the initial value, denoted by si. We can use Hoare logic to synthesize
a SML program that satisfies this specification, by producing, for example, a
theorem of the form

� s :=!s ∗ 3 � sf > si

where the left-hand-side of � symbol is the required SML program, and the
right-hand-side is a true statement about the program.

To specify and synthesize return values of a program we adapt realizability
and proofs-as-programs. For instance, given the theorem
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s := s ∗ 3 � sf > si ∧ (∃x : int.Even(x) ∧ x > si)

we can synthesize a program of the form

s := s ∗ 3; f

where the function f is a side-effect-free function (such as !s∗2) that realizes the
existential part of the post-condition (∃x : int.Even(x) ∧ x > si), by providing
a witness for the x. Our adaptation is done according to the Curry–Howard
protocol framework outlined in the previous chapter (Chapter 3 of Part II).

Hoare logic is usually defined with respect to an internal logic. We take
this to be constructive (intuitionistic) logic. This enables us to use some of the
results of intuitionistic proofs-as-programs to synthesize correct return values
from proofs. However, the adaptation is not trivial, as, unlike in functional
program synthesis, our specifications involve initial and final values of state, and
our extracted side-effect-free functions can sometimes involve state references.

The advantage of our approach to return value synthesis is that the user need
not code the return value manually, but instead works within a logical theory to
prove a theorem from which the return value is extracted. Constructive program
synthesis has a successful track record in deriving side-effect-free functional
programs. These methods are equipped to reason directly about and synthesize
functions.

By combining Hoare-like approaches with constructive program synthesis,
we obtain a best-of-both-worlds system for specifying and synthesizing the two
aspects of imperative programs.

This part proceeds as follows:

• Chapter 4 presents a constructive version of Hoare logic for reasoning about
and constructing imperative SML programs.

• The semantics of this logic is investigated in Chapter 5. That chapter also
shows how the logic may be given a type-theoretic presentation in the style
of the Curry–Howard isomorphism, where proofs and theorems are taken as
terms and types of a logical type theory.

• The last chapter of this part, Chapter 6, shows how to use the type theory
for imperative program synthesis by applying the Curry–Howard protocol.
We discuss the uses of our approach to imperative program synthesis in
a practical setting, and, in particular, show how the so-called design-by-
contract approach to system design (see, e.g., [Mey97]) can be aided by our
results.
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Intuitionistic Hoare Logic

Hoare logic is a formal system for simultaneously reasoning about and con-
structing imperative programs. The system was first described by Hoare in
[Hoa69]. In this chapter we define a constructive version of Hoare logic, called
Intuitionistic Hoare logic, IHL, for reasoning about side-effects of imperative
programs in SML. In later chapters we will adapt proofs-as-programs methods
to this logic, to specify and synthesize imperative programs with side-effect-free
return values.

The Hoare logic specifies side-effects through pre- and post-condition formu-
lae [Flo67, Hoa69]. Pre- and post-conditions are assertions about the behavior
of a program before and after execution, respectively. In the original presen-
tation of the Hoare logic, pre- and post-condition formulae were treated as
distinct [Hoa69]. We shall utilize the fact that pre- and post-conditions can be
combined into a single formula description (common in, e.g., OCL [WK98], the
B-method [Abr96], or Abadi [AL97]). For our purposes pre- and post-condition
formulae are statements of many-sorted predicate logic, with special symbols
used to denote values of state.

The Hoare logic manipulates theorems that, in our presentation, consist of
pairs of programs and pre- and post-condition formulae, of the form

p � F

where the left hand side of the diamond is a program, and the right hand side of
the diamond is a pre- and post-condition description of the program’s behavior.
The program’s side-effect is described by the formula in terms of initial and final
state reference values, prior to, and after, execution. We denote initial and final
state reference values by the name of the state reference with a ()i or a ()f

subscript respectively.

Example 4.1. An example of a theorem is

� r :=!r + 1 � rf = ri + 1
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The example theorem is correct, because the pre- and post-condition statement
asserts that the final value of state reference r is equal to the increment of the
initial value, after executing the program r :=!r + 1.

The rules of the logic derive new theorems, enabling the user to develop
programs and assertions about the program in tandem.

Hoare logic is always defined with respect to a separate logical subsystem.
Usually, this is classical logic. This chapter introduces a version of Hoare logic
that uses intuitionistic logic as its subsystem. In Hoare’s 1969 paper [Hoa69],
the logic was given with respect to a simple, toy, imperative language. Here, we
will consider an imperative subset of SML.

The usefulness of our version of Hoare logic will be seen in later chapters
where we use constructive aspects of IHL for adapting proofs-as-programs to
synthesize SML programs with side-effects and side-effect-free return values.

Because Hoare logic involves programs and pre- and post-condition formulae,
the first part of this chapter is dedicated to defining the syntax and semantics
of programs and formulae. Then we define Hoare logic proper.

We proceed as follows:

• Section 4.1 defines the form of the signatures we use in this part of the book.
• In Section 4.2 we define an imperative subset of SML.
• Section 4.3 provides a simple operational and relational semantics for our

subset.
• Section 4.4 defines well-formed formulae for our calculus and defines when

a formula is true about an imperative SML program execution.
• We present Intuitionistic Hoare logic in Section 4.5. We explain why its rules

allow us to infer true statements about programs.
• Section 4.6 compares our presentation to the more standard, Hoare-triple-

based, presentations of Hoare logic.
• Finally we provide a summary and discussion of our results in Section 4.7.

Chapter 5 will discuss soundness and completeness of IHL and will show
how IHL can be given a type theoretic presentation. Chapter 6 will achieve the
goal of this part, identifying how correct imperative SML programs with return
values can be synthesized from its proofs using proofs-as-programs.

The results of this chapter are standard, ultimately deriving from Hoare’s
original paper [Hoa69]. However, our use of SML, the choice of intuitionistic
logic as a subsystem, and the natural deduction presentation, are points of
difference from the usual literature.
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4.1 Signatures

Our work will be parametrized over many-sorted signatures. We shall use sig-
natures for two purposes:

• to define an assumed SML preamble of datatype and function declarations,
which will be used in constructing larger SML programs, and

• to define terms for use in formulae of our Hoare logic.

Notation 4.1. First we take the following convention. As in the previous part, we
will often let sets of things (terms, values, side-effect-free programs) be common
to both programs and formulae. Depending on the context, we will interchange
the names “sorts” and “types” to denote names of collections of things. We will
use “types” when referring to collections of things used in programming (pro-
grams, values of programs, etc). We will use “sorts” when referring to collections
of things used in formulae (terms used in predicates). We use a typewriter font
to denote types and roman font to denote sorts.

We employ the usual definition of signature (specifically, we take that given
in [CoF01, p. 3]), but extended with sorts corresponding to the relevant types
of imperative SML: functional, product, disjoint union sorts, and the unit sort.

Definition 4.1.1 (Many-sorted signature with total functions). A
many-sorted signature Σ = 〈S, TF, Pred〉 consists of:

• A set, S, of sorts. Sorts are generated from a set of basic sorts, B(S) as
according to the following inductive definition. First, B(S) ⊂ S. Also, if s1
and s2 are in S, then so are the
— function sort (s1 → s2)
— product sort (s1 ∗ s2)
— disjoint union (s1|s2).

• We assume that B(S) includes a special sort, called Unit.
• Sets TFw,s, of total function symbols, for each function profile (w, s). A

function profile, (w, s), consists of a sequence word of argument sorts w ∈
S∗ and a result sort s ∈ S (constants are treated as functions with no
arguments). The length of w is called the arity of function symbols in TFw,s.

• We assume that there is only one element in TF∅,Unit, a unit symbol, written
().

• Sets Pw of predicate symbols, for each predicate profile w. A predicate profile
consists of a sequence of argument sorts w ∈ S∗. The length of w is called
the arity of predicate symbols in Pw. For each basic sort s ∈ B(S), there is
a distinguished equality predicate =s∈ Pss.

Our signature definition is the same as Definition 2.1.1, Chapter 2 of Part II.
As in that part of this book, the symbols that identify operations and predicates
may be overloaded, occurring in more than one of the above sets. Whenever
there is ambiguity in sentences, function symbols f , and predicate symbols
P should be qualified by profiles, written fw,s and Pw respectively. When no
ambiguity is present, these profiles can be omitted.
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4.1.1 Lambda terms

We define a lambda calculus for a signature as in Chapter 2 of Part II. The set
of lambda terms Terms(Σ), for a signature Σ = 〈S, TF, Pred〉, is given with
respect to a denumerable set of term variables, V ar, disjoint from the constants
in TF . For reference, we repeat the grammar here in Fig. 4.1.

a, b, c ::= elements of Terms(Σ)
e any function or constant from TF
x a variable x ∈ V ar
Inl(a) in left
Inr(a) in right
match a with Inl(x) => b | Inr(y) => c match case, x, y ∈ V ar
fun x : s => b lambda abstraction, s ∈ Sorts(Σ)
(a b) application
(a, b) pair
fst (a) first projection
snd (a) second projection

Fig. 4.1. Syntax terms of Terms(Σ).

Terms are associated with sorts according to sort inference rules. We follow
the same rules given in Fig. 2.2, p. 29, Chapter 2 of Part II. For reference, the
rules are repeated in full in Fig. 4.2.

Free and bound variables are defined in the usual way.

Definition 4.1.2 (Free and bound variables of Terms(Σ)). Let x be any
variable of V ar, and t be a term of Terms(Σ).

Then, x is bound in t if there is a subterm of t of the form

fn x : s => b

or
match a with Inl (x) => b | Inr (y) =>c

or
match a with Inl (y) => b | Inr (x) =>c

If x is not bound in t, then x is free in t. We write BV (t) for the set of all bound
variables of t, and FV (t) for the set of all free variables of t. A term with no
free variables is called closed.

We write Closed(Terms(Σ)) for the set of closed PML programs.



4.1 Signatures 99

Γ, x : s �Σ x : s
(Ass)

f ∈ TF(s1...sn),s Γ1 � a1 : s1 . . . Γn � an : sn

Γ, Γ1, . . . , Γn �Σ f(a1, . . . , an) : s
(Fn)

Γ �Σ a : s1

Γ �Σ Inl(a) : (s1|s2)
(Union1)

Γ �Σ a : s2

Γ �Σ Inr(a) : (s1|s2)
(Union2)

Γ1 �Σ a : s1 Γ2 �Σ b : s2

Γ1, Γ2 �Σ (a, b) : (s1 ∗ s2)
(Prod)

Γ �Σ a : (s1 ∗ s2)
Γ �Σ fst (a) : s1

(Proj1)
Γ �Σ a : (s1 ∗ s2)
Γ �Σ snd (a) : s2

(Proj2)

Γ, x : s1 �Σ a : s2

Γ �Σ fn x : s1 => a : s1 → s2
(Abs)

Γ1 �Σ a : s1 Γ2 �Σ b : (s1 → s2)
Γ1, Γ2 �Σ (b a) : s2

(App)

Γ1 �Σ a : (s1|s2) Γ2, x : s1 �Σ b : s Γ3, y : s2 �Σ c : s

Γ1, Γ2, Γ3 �Σ match a with Inl (x) => b | Inr (y) =>c : s
(Case)

Fig. 4.2. Sort inference rules for terms of PML.

4.1.2 Evaluation

Because our terms constitute a lambda calculus we have the usual reduction
rules. The rules are similar to those given in Section 2.4, Chapter 2 of Part II.
The rules define a one-step reduction relation �Σ , given in Fig. 4.3. We write
�̂Σ for the transitive closure of �Σ , and say that a evaluates to b if

a �̂Σ b

We write
a �∗

Σ b

if b can be obtained from a by one or more applications of the rules.

Definition 4.1.3 (Irreducible, normal terms). The set of irreducible, nor-
mal terms, Normal(Σ), consists of elements a from Terms(Σ) such that

a �̂Σ a

Assumption 4.1. The rules are parametrized with respect to possible evaluation
of function symbol application. When a function is applied to arguments of ap-
propriate arity and types, we assume that there is always a resulting answer.
This assumption is formalized by assuming a mapping, EvalΣ , that gives the re-
turn value for function applications: given a function symbol f ∈ TFs1...sn,s and
arguments (a1, . . . , an) of sorts s1, . . . , sn respectively, EvalΣ(f(a1, . . . , an)) re-
turns a term from Terms(Σ) of sort s.
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(fn x : s => p) a �Σ p[a/x]
match Inl(a) with Inl (x) => b | Inr (y) =>c �Σ b[a/x]
match Inr(a) with Inl (x) => b | Inr (y) =>c �Σ c[a/y]

fst (a, b) �Σ a
snd (a, b) �Σ b

f(a1, . . . , an) �Σ EvalΣ(f(a1, . . . , an))

Fig. 4.3. Rules that define �Σ , giving the operational semantics of the data values.

This concludes our discussion of many-sorted signatures and their associated
terms. In the next section, we will use these concepts in our definition of SML.
In section 4.4, we will again use signatures to define the terms used in our
formulae.

4.2 A subset of SML

We shall be reasoning about an imperative subset of SML, called IML, described
in this section. We base our description on the SML standard given in [MTH90].
However, our definition is self-contained and it is not necessary for the reader to
be well-versed in the standard. The language comprises basic imperative con-
structs (assignments, sequencing, conditionals, and loops) and has functional,
product and disjoint union types. It includes side-effect-free programs that can
be used to define return values and as boolean checks in loops and conditional
statements. SML programs are usually written using precoded functions from
libraries. In our work, we will assume a preamble library of datatypes, side-
effect-free functions and black-box programs.

4.2.1 Preamble

Our preamble is formally defined now. The preamble will consist of two kinds
of programs: pure SML functions, whose execution does not affect memory,
and black-box programs with side-effect-effects, whose execution will result in
changes to memory.

We shall use a signature to denote the pure SML functions of the preamble:

Σp = 〈S, TF, Pred〉

where the set of sorts, S, denotes the types available to the preamble, the
set of functions TF denotes the set of side-effect-free functions defined in the
preamble, and Pred is a set of predicate symbols used to make logical state-
ments about the preamble. We defer discussion of the use of predicates to the
next section. We will consider the lambda calculus of terms formed from our
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functions, Terms(Σp), to define a set of pure SML programs, a subset of the
programs of interest IML.

As in the previous part, we use typewriter font to distinguish terms and
sorts of Σ when used as programs and types of SML, as opposed to terms and
sorts in formulae.
Assumption 4.2. We assume that Σp includes the usual definition of the boolean
data type bool, so that, for any closed boolean term b : bool, either

b�̂
∗
Σp

true

or
b�̂

∗
Σp

false

This assumption will be important when we use Σp to define boolean checks in
conditional and while-loop constructs of IML.

Also, our results will assume a set of side-effect-producing, black-box pro-
grams. These black-box programs will be represented by sets of function sym-
bols, BB. Each set BBt of BB is sorted according to the sorts of Σp. A function
symbol f ∈ BBt is intended to denote a side-effect-producing program named
f of type t.
Assumption 4.3. We make the following assumptions about the precoded Σp

and BB:

• All the functions and constants from the signature Σp and BB are defined
in the preamble.

• We assume that the evaluation mapping EvalΣp models the behavior
of the pure function symbols TF in the SML preamble. Thus the term
EvalΣp

(f(a1, . . . , an)) should denote the return value obtained by evaluat-
ing f(a1, . . . , an) in SML.

• Basic sorts correspond to assumed SML types that have been defined in
the preamble. Functional and product sorts (t → u) and (t ∗ u) are taken
as functional and product SML types (t−> u) and (t ∗ u) respectively. The
disjoint union t|u is taken as shorthand for

(t, u) disjointUnion

an instantiation of the parametrized SML datatype, given in the preamble
as

datatype (′a,′ b) disjointUnion=Inl of ′a | Inr of ′b; ;

These assumptions are comparable to those made in our treatment of pure
functional SML in Section 2.4, Chapter 2 of Part II, p. 42.

Imperative SML programs involve state references — memory addresses —
to store values. References are similar to pointers in C or C++, and must be
dereferenced to obtain the value stored at the memory address. So we assume
a set of state references, StateRef, sorted according to Σp. An element r ∈



102 4 Intuitionistic Hoare Logic

StateRefs is intended to represent a state reference that is available for use in
a SML program. To obtain the value denoted by the state reference, SML uses
the dereferenced expression !r, of SML type s.

We use the following sorted sets of dereferenced states:

!StateRefs = {!r | r ∈ StateRefs}
Assumption 4.4. To use the state references of StateRef in actual SML programs,
we assume the preamble provides an initialization of the form

val s1 = ref ... ;;
val s2 = ref ... ;;
val s3 = ref ... ;;
...
val sn = ref ... ;;

where s1, . . . , sn are all the state references of StateRef. Each initialization is
of the form

val r = ref a; ;

and must set the state identifier r to a reference ref a of the SML type ref t
where r ∈ StateReft. In this way state references, StateRef, are to be considered
as global state references, available for any SML program we write.

4.2.2 Pure SML programs

We identify a pure, side-effect-free subset of SML constructed from a signature
built from Σp with additional dereferenced state identifiers !StateRef.

ΣPML = 〈S, TF ∪ !StateRef, P red〉
The pure programs consist of the lambda terms

PML = Terms(ΣPML)

Example 4.2 (Terms of PML). Assuming we have the usual representations of
integer arithmetic and lists of strings in BB, the following are example terms
of PML, if name1, name2, s1 and s2 are state references in StateRef.

!s1+!s2

fn x : string => [x]@[!name1, !name2, ’Iman Poernomo’]

fst(!s1, 22)

Remark 4.1. Observe that PML forms a lambda calculus. It is the same kind
of lambda calculus subset of SML we reasoned with in Chapter 2 of Part II,
but extended to include dereferenced states. So we have the usual notion of free
and bound variables.
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Remark 4.2. PML does not use state references in its lambda terms. That is
to say, the names of SML memory addresses cannot be used. We can only use
the values stored in these addresses by use of dereferenced states. It is possible
to define a larger, pure subset of SML that includes state references, for use in
pointer arithmetic expressions. However, PML will suffice for the purposes of
this monograph.

4.2.3 Terms of IML

The terms of PML define a side-effect-free subset of SML. We now define an
imperative extension of PML, called IML. This is the language we will use in our
Hoare logic. The grammar of IML is given in Fig. 4.4, and involves the black-box
programs of BB, together with the basic imperative constructs of assignments,
sequencing, conditionals, and loops. Terms of PML are used to define Boolean
terms, value expressions for state assignments and side-effect-free return value
expressions.
Remark 4.3. Significant to the main result of this part of the book, given in
Chapter 6, is the fact that IML includes a side-effect-free subset, PML. This
permits the definition of complex side-effect-free return value expressions. In
Chapter 6, we will show how an adaptation of proofs-as-programs permits us
to synthesize correct IML programs with PML return value expressions, from
proofs in our Hoare logic.

a, b ::= IML terms
t any side-effect producing function symbol from BB
p any closed side-effect-free term from Closed(PML)
a; b sequencing
s:=v assignment of state reference s ∈ StateRef to side-

effect-free term v ∈ Closed(PML)
if c then a else b conditional, c : bool a Boolean term in PML
while c do b while-loop, c : bool a Boolean term in PML
() unit

Closed(PML) are terms of PML that do not contain free variables — see Def-
inition 4.1.2.

Fig. 4.4. Syntax of IML constructed over black-box programs from BB and PML.

Remark 4.4. Note that the syntax of IML permits state references to be assigned
to closed terms of PML. This reflects the situation in SML where assignment
to open terms is illegal. For instance,
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s :=!s + x

is an illegal assignment because x is free in !s + x, while

s := fn x : int => !s + x

is a legal assignment, because fn x : int => !s + x is a closed term.

4.2.4 Types of IML

We take the set of types of our programs, Types(IML), to consist of the sorts
S of Σp (the same sorts used by PML and BB) — (we refer to these sorts as
types when using them in SML programs).

Terms are associated with types according to the inference rules TIR(IML).
These rules involve a sorting relation (:) between terms and types. An inference
takes the form

Γ �IML a : s (4.1)

where Γ is a context of variables with types of the form {x1 : s1, . . . , xn : sn}.
The inference’s intended meaning is that the term a has the type t, given when
its free variables x1, . . . , xn denote possible terms of types s1, . . . , sn. If Γ can
be uniquely inferred from a, we say a is well-typed with type s and simply write
a : s.

The type inference rules for the PML subset are simply the sort inference
rules for

ΣPML = 〈S, TF ∪ !StateRef, P red〉
that is to say,

Γ �ΣPML a : s⇔ Γ �IML a : s

Remark 4.5. The rules include typing for dereferenced states, treated as function
symbols of the signature. This is achieved by the rule

s ∈ !StateReft
Γ �IML !s : t

(Fn)

The typing rules for the imperative part of IML are given in Fig. 4.5.

4.2.5 IML is a computational type theory

We observe that IML defines a computational type theory (CTT) in the sense
used by the Curry–Howard protocol, of the form

C(IML) = 〈Terms(IML),Type(IML), :,�IML,TIR(IML)〉
(See Chapter 3, Definition 3.2.4, p. 86 for the general definition of a CTT.)

Terms, Terms(IML), and types, Type(IML), are the terms and types of
IML, with the typing rules for �IML defining a set TIR(IML).
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b ∈ BBt

Γ �IML b : t
(BB)

Γ1 �IML s : t Γ2 �IML v : t
Γ1, Γ2 �IML s := v : t

(assign)

Γ1 �IML a : U Γ2 �IML b : t
Γ1, Γ2 �IML a; b : T

(seq)

Γ1 �IML a : Bool Γ2 �IML b : t Γ3 �IML c : t
Γ1, Γ2, Γ3 �IML if a then b else c : t

(conditional)

Γ1 �IML w : t Γ2 �IML c : Bool
Γ1, Γ2 �IML while c do w : unit

(loop)

Type inference rules for the subset of side-effect-free terms PML are given in
Fig. 4.2.

Fig. 4.5. Type inference rules for the imperative constructs of IML.

4.3 Semantics of SML

The semantics of programs is given as usual, according to a model of an abstract
environment with mutable memory state. The machine’s state consists of state
identifiers that store data values. A program’s evaluation changes the state of
the machine by affecting the contents of these identifiers.

We provide two related forms of semantics — an operational and a rela-
tional semantics — that tell us how programs evaluate. The former semantics
tells us how we expect programs to execute, in terms of reduction sequences
that produce (possibly non-terminating) sequences of states of the abstract en-
vironment, possibly resulting in a return value. The latter semantics provides a
more abstract understanding of programs, as side-effect relations between final
and initial states. A side-effect is formally understood as a relation between two
states, representing the result of executing a terminating imperative program,
to make a transition from an initial state to a final state.

The operational semantics will be useful for two reasons:

1. Operational semantics models how a SML program evaluates. It is therefore
at a lower level of abstraction than relational semantics, and we can define
the relational semantics in terms of the operational.

2. The operational semantics tells us how programs evaluate, and what their
return value is. In contrast, the relational semantics ignores return values.
This is important for Chapter 6, where we will be concerned with synthesis
of correct return values.

The relational semantics of programs is a higher-level, less detailed, descrip-
tion of how programs can evaluate, and is useful in understanding the semantics
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of Hoare logic given in this chapter and for deriving soundness results in Chap-
ter 5.

It is possible to define a third, denotational, semantics for our programs,
but this is not necessary for our results.

4.3.1 Data values

Our programs manipulate data. Data can be thought of as mathematical values.
Unlike programs, values are static, and are not open to further reduction but
are independent of changes to the memory of the computer.

In SML these data terms are always not amenable to further reduction and
are closed — they cannot have free variables.

For the purposes of this book we shall define our values to be the closed,
irreducible, side-effect-free terms of Terms(Σp). Because repeated application
of the reduction rules for these always terminates, we shall consider data values
to be equivalent modulo the �̂Σp relation.

Definition 4.3.1 (Values). We define the set of data values to be the closed,
irreducible terms of Terms(Σp),

Values = Closed(Normal(Σp))

Remark 4.6. We do not permit state references in our data. In full SML it
is possible to have state references themselves as values. This is useful when
pointer manipulation is required. However, we do not consider such values here.
See remark 4.2 for a similar note about PML.

4.3.2 States

Intuitively we can imagine a state of a SML environment to be a configuration
of the memory of a computer. Recall that SML state references are named
locations of memory (see p. 101 in the previous section). In our semantics we will
be interested in understanding program execution in terms of state “snapshots”
of the memory — all the values stored at state references for a particular instant
in the evaluation of a program.

The formal definition of a state of is as follows.

Definition 4.3.2 (State). A state is a function σ from the state references
StateRef to values from Values. We let MLStates consist of the set of all states.
We assume that any σ ∈ MLStates maps state references to Closed(PML) terms
of the same type. That is to say, σ must satisfy the constraint

s ∈ StateRef StateType(s) = t⇔ �IML σ(s) : t

This requirement is standard for any modern imperative language: state refer-
ences are typed, and may only store values of their types.

Each function σ ∈ MLStates represents a possible memory configuration,
where σ(s) is the value of the state reference s.
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We will use the following notation.

Definition 4.3.3. Given a term n ∈ PML and a state σ we write σ(n) for the
term

n[σ(!s̄)/!s̄]

(which is in Values) where !s̄ is a list of every dereferenced state reference in n.

Remark 4.7. If n is a side-effect-free term, only the values of its dereferenced
state references need to be computed in order to transform n into a value (that
is to say, into an element of Values). Thus, the term σ(n) should be thought of
as an evaluation of n in state σ.

4.3.3 Operational semantics

An operational semantics will now be given in terms of possibly infinite reduc-
tion sequences of programs and memory states, each representing a “snapshot”
of how the program execution affects the state of the SML interpreter.

We use a typical call-by-value operational semantics (see, e.g., [Gun93]),
given in Fig. 4.6. The semantics defines an evaluation relation �IML over pairs
of IML programs and states,

〈p, σ〉
called configurations.
Notation 4.2 (Variants of maps). We will use the following notation
throughout this monograph. Given any mapping θ : A → B, we will write
θ[a �→ b] : A→ B for the mapping that is identical to θ over all elements of the
domain, except (possibly) a, which is mapped to b.

Remark 4.8. The intended meaning of

〈p, σ〉�IML 〈p′, σ′〉

is that p can evaluate to p′ with a change in state from σ to σ′. So the value of
the state location s is σ(s) prior to running p. Similarly, the value stored in s
is σ′(s) after p evaluates to p′.
Remark 4.9. Observe that the (PML) rule shows how to evaluate PML terms,
by

1. evaluating all dereferenced state identifiers, to give a data value, and then
2. applying lambda reduction rules, to obtain a final value that cannot be

reduced further.

As a consequence of this, all function symbols used in PML (that is, those
symbols from the signature Σp) are evaluated according to the Evalp mapping.

The semantics assumes we know how to evaluate side-effect-producing black-
box programs of the preamble. Recall that such functions are given in BB.
We assume that evaluation is correctly described by a mapping Evali, from
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n ∈ Closed(PML) σ(n) �∗
Σp v

〈n, σ〉 �IML 〈v, σ〉 (PML)

Evali(f(a1, . . . , an), σ) = (b, σ′)

〈f(a1, . . . , an), σ〉 �IML 〈b, σ′〉 (se)

〈p1, σ〉 �IML 〈p′
1, σ

′〉 〈p2, σ
′〉 �IML 〈p3, σ

′′〉
〈p1; p2, σ〉 �IML 〈p3, σ

′′〉 (seq)

σ′ = σ[s �→ σ(v)]

〈s := v, σ〉 �IML 〈!s, σ′〉 (assign)

σ(b) �Σp true

〈if b then p else q, σ〉 �IML 〈p, σ〉 (conditional)1

σ(b) �Σp false

〈if b then p else q, σ〉 �IML 〈q, σ〉 (conditional)2

σ(b) �Σp false

〈while b do c, σ〉 �IML 〈(), σ〉 (while)1

σ(b) �Σp true 〈c, σ〉 �IML 〈r, σ′〉
〈while b do r, σ〉 �IML 〈while b do c, σ′〉 (while)2

Fig. 4.6. Operational Semantics for IML

function applications and states to values and states. Given a function symbol
f ∈ BBs1...sn,s, arguments (a1, . . . , an) of sort (s1 ∗ . . . ∗ sn), and initial state σ,

Evali(f(a1, . . . , an), σ)

gives a value from Values of sort s and a new state σ′. We assume that
Eval(f(a1, . . . , an), σ) is exactly the return value and final state obtained by
evaluating f(a1, . . . , an) in SML.
Assumption 4.5. Recall that Assumption 4.2 (p. 101) took Σp and consequently
the closed irreducible terms of that signature, Values, to include booleans. So,
for any b ∈ Values and any state σ, either

σ(b) �∗
IML true or σ(b) �∗

IML false

This ensures that the boolean checks of conditional and while-loop statements
will always reduce to true or false, just as they should do in SML.

4.3.4 Evaluation and return values

We define evaluation of a program to be the repeated application the reduction
rules of Fig. 4.6. It is important to note that these rules will sometimes never
terminate — we can have SML programs that continue in infinite loop.
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For instance, to evaluate a program p for a given initial state σ, we consider
the configuration

〈p, σ〉
and apply a rule to obtain a new configuration

〈p1, σ1〉
such that

〈p, σ〉�IML 〈p1, σ1〉
We then repeat the process, obtaining a possibly non-terminating sequence of
configurations:

〈p, σ〉 �IML 〈p1, σ1〉
�IML . . .
�IML 〈pn, σn〉
�IML . . .

If the sequence terminates at a final configuration, say, 〈pj , σj〉 some j, then we
say that p in initial state σ evaluates to return value pj with final state σ′.
Example 4.3. Consider the loop

while !conEstab == false do
tryConnect();

‘Connection established’

This program tries to establish a connection with a database, by repeatedly
calling a function called tryConnect(). The state conEstab determines if a
connection has been established or not. The program continues until this state
has a true value.

The evaluation sequence of the program will either continue indefinitely or
else terminate with a string return value,

‘Connection established’

Example 4.4. Assume StateRef includes the state i with StateType(i) = int.
Let σ be a state such that σ(i) = 0. The program

while !i < 3 do i :=!i + 1

results in a terminating execution sequence

〈while !i < 3 do i :=!i + 1, σ〉
�IML 〈while !i < 3 do i :=!i + 1, σ[i �→ 1]〉
�IML 〈while !i < 3 do i :=!i + 1, σ[i �→ 2]〉
�IML 〈while !i < 3 do i :=!i + 1, σ[i �→ 3]〉
�IML 〈(), σ[i �→ 3]〉

by repeated application of the (loop) reduction rule, because, for any τ ,
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〈i :=!i + 1, τ〉�IML 〈(), τ [i �→ τ(i) + 1]〉
Thus this program in initial state σ evaluates to return value () with final state
σ[i �→ 3].
Remark 4.10. Inspection of our operational semantics easily reveals that return
values are always elements in Values.

4.3.5 Relational semantics

We now turn our attention to a more abstract, relational semantics of programs.
This semantics considers programs solely in terms of a range of possible side-
effects, that is, changes in state that result from execution. The relational view,
in contrast to the more detailed view afforded by operational semantics, is not
concerned with sequences of state and program configurations, nor in the return
values given by some executions.

We write MLRel for the set of side-effect relations given over MLStates,

MLRel = P(MLStates×MLStates)

(where P(A) denotes the power set of a set A).
Given a relation R ∈ MLRel and σ, σ′ ∈ MLStates, we will often write

σ R σ′

for
(σ, σ′) ∈ R

A side-effect relation provides an abstract view of program behavior in terms
of input and output states.
Example 4.5. Using our notation, the increment function g := g + 1 is repre-
sented by the side-effect relation from MLRel

R = {(σ, σ′) | σ′ = σ[g �→ σ(g) + 1]}
A relational semantics for IML programs is given by associating a side-effect

relation with each IML program, using a semantic valuation map

[[.]] : IML→ MLRel (4.2)

The definition of [[.]] simply uses the operational semantics of terminating
programs, ignoring intermediate states.

Definition 4.3.4 (Relational semantics of programs). Given any program
p ∈ IML, if there are states σ, σ′ ∈ MLStates such that

〈p, σ〉�̂IML〈r, σ′〉
for some return value r ∈ IML then
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(σ, σ′) ∈ [[p]]

If there are no such states for p (that is to say, if the program does not
terminate), then we take [[p]] to be the emptyset ∅.
Remark 4.11. It is possible to define a relational semantics for our programs
that is independent of the operational semantics, by defining operators over the
side-effect relations that correspond to imperative constructs. Such a semantics
can be built using, for instance, Kleene Algebras with tests (see, e.g., [Koz97]).
Remark 4.12. Values constitutes a term model for data stored in states. It is
possible to define a wider range of models for data, and, as a consequence,
a more general relational semantics for IML. This type of general relational
semantics is commonly used for the semantics of Hoare logic.

However, for our purposes, we are only interested in states MLStates that
involve Values as data. This is because, in SML, it is the terms of Values that
are stored in SML state references, and we are primarily concerned with a
model of execution that is as close to SML implementation as possible. When
we introduce formulae of intuitionistic Hoare logic and the calculus itself, we
will provide soundness results using MLRel. The interested reader is referred
to [Cou90] for a more general semantic treatment of Hoare logic, given over a
range possible relational semantics. It would be easy to adapt that treatment
to our case.

4.4 Formulae

We define a set of formulae that describe side-effect relations and, as a con-
sequence, program behavior. A range of possible side-effects is specified by
pre- and post-conditions, in the single formula style of, for instance, OCL
[WK98], the B-method [Abr96], or Abadi’s object-oriented extension of Hoare
logic [AL97].

A side-effect is described in terms of initial and final state reference values,
prior to, and after, execution. Such initial and final state reference values are
respectively denoted by the name of the state reference with a ()i or with a
()f subscript. For instance, the formula rf > ri specifies side-effects where the
initial value of r, denoted by rf , is greater than the initial value, denoted by
ri. A program that satisfies this specification is r :=!r + 1.

The formulae of our logic are first-order, many-sorted, and use the quantifiers
and connectives of classical/intuitionistic logic. Sorts, terms, and predicates are
obtained from the signature Σp.

To enable the specification of side-effects our predicates range over the usual
set of terms of Σp extended by the subscripted StateRef symbols that denote
initial and final state reference values. For instance, if r ∈ StateRef then ri ∗
20 + rf is a well-formed term that may be used in our logic.

We can define when a formula is true of a side-effect relation from MLRel.
Recall that a program’s execution is defined by a particular side-effect relation.
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We therefore can define when a formula is true of a program’s execution: this
is exactly when it is true of the program’s side-effect relation. For instance,

sf > si

is true of the side-effect relation

R = {(σ, σ′) | σ′ = σ[s �→ σ(s) + 1]}
because the new value of s is greater than the old value of s for R (that is, σ′(s)
is greater than σ(s) for every (σ, σ′) ∈ R). The side-effect relation R denotes
the range of possible side-effects for s := s + 1, and so the formula is true of
this program’s execution.

We proceed as follows. We first describe a set of terms used by our formulae.
Then we define the set of well-formed formulae. Finally, we define when a for-
mula is true of a side-effect relation, and, hence, true of a program’s execution.

4.4.1 Terms

Our terms consist of the lambda calculus built from Σp, extended by extra
symbols to refer to the initial and final values of state identifers in a given
side-effect relation.

Definition 4.4.1 (Initial and final values). We reserve a sorted set of sym-
bols IStateVal to represent initial values of state references, and a sorted set
FStateVal to represent final values, i.e.,

IStateValt = {si | s ∈ StateReft}
FStateValt = {sf | s ∈ StateReft}

We write StateVal for IStateVal ∪ FStateVal. Given a term si ∈ IStateVal, we
write state− id(si) for the corresponding state reference, s. We overload this
function, so that, given a term sf ∈ FStateVal, we write state−id(sf ) for the
corresponding state reference, s.

Our terms are defined as follows.

Definition 4.4.2 (Elements of Terms(Σt)). We define the signature of our
terms to be

Σt = 〈S, TF ∪ StateVal, P red〉
formed from Σp extended by StateVal, treated as function symbols.

Then we define Terms(Σt) according to the grammar of Fig. 4.1, p. 98.

Remark 4.13. Terms(Σt) is a lambda calculus equipped with the usual notion
of free and bound variables.
Remark 4.14. Note that we have now defined three distinct lambda calculi —
PML, Values, and now Terms(Σt). The calculi all share the sorts S and function
symbols TF . However, they each serve different purposes:
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• PML defines the side-effect-free expressions of IML,
• Values defines the data values of states and evaluated return values of pro-

grams.
• Terms(Σt) is used in Hoare logic as terms of predicates.

Example 4.6. Assuming Σt contains symbols for representing integer arithmetic,
strings and lists of strings, the following are elements of Terms(Σt):

fn x : int => x + sf + si

s1i + s2i

fn x : string => [x]@[name1f , name2f ,′ Iman Poernomo′]

fst(f1i, 22)

Because Terms(Σt) is a lambda calculus we have the reduction relation
�Σt

, with rules as defined in Fig. 4.3, p. 100.
Remark 4.15. The reduction rules treat the state identifiers as irreducible con-
stant symbols. State identifiers are only associated with values when interpre-
tated with respect to a given side-effect relation, described later in this section.

We will require the following definition.

Definition 4.4.3 (State reference values for a term). Let t be a term of
Terms(Σt). We define initial(t) to be the list of IStateVal symbols that occur
in t. We define final(t) similarly, to be the list of FStateVal symbols that occur
in t.

The sort inference rules for our terms are simply those of Σt, as given in
Fig. 4.2, p. 99.
Remark 4.16. Note that the sort inference rules treat the initial and final state
references as function symbols for the purpose of associating sorts:

si ∈ IStateValt
Γ �Σt si : t

(Fn)i

sf ∈ FStateValt
Γ �Σt sf : t

(Fn)f

4.4.2 Well-formed formulae

We use first-order, many-sorted formulae to make assertions about programs.
All predicates and terms are taken from Σt.

The definition well-formed formulae over the signature Σt is as in Defini-
tion 2.1.3 of Chapter 2, Part II. We repeat the definition for reference, made
specific for our signature Σt.

Definition 4.4.4 (Well-formed formulae for Σt). Let Σt = 〈S, TF ∪
StateVal, P 〉. The set of well-formed formulae for a signature, WFF (Σt) is the
least set containing
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• every P (s1, . . . , tn) where P ∈ P{s1,...,sn} is a predicate symbol in P and
every tj (j = 1, . . . , n) is a well-sorted term of sort sj ,

• every formula (A ∧B), A, B ∈WFF (Σt),
• every formula (A ∨B), A, B ∈WFF (Σt),
• every formula (A⇒ B), A, B ∈WFF (Σt),
• every formula ∀x : s • F where x ∈ V ar and F ∈WFF (Σt),
• every formula ∃x : s • F where x ∈ V ar and F ∈WFF (Σt),
• the formula ⊥.

We often write ¬A for A⇒ ⊥.

The usual definitions of free and bound variables apply to our formulae.

Definition 4.4.5 (Bound and free variables of formulae). A formula G
binds a variable of V ar if, and only if, either

• G contains a subformula of form ∀x : s •A or ∃x : s •A, or
• G contains an atomic subformula of the form P (a1, . . . , an) where x : s

occurs in BV (aj) for some aj (j ∈ {1, . . . , n}).
In this case, we say x is bound in G. If a variable x is not bound by a formula
G, but occurs in a Terms(Σt) term used in an atomic subformula of G, then
we say that it occurs free in G.

We write FV (G) for the set of free variables of G, and BV (G) for the set
of bound variables.

4.4.3 Interpreting terms of Terms(Σt)

To understand how our formulae specify SML program behavior, we need to
interpret them over the data that is stored in state references used by IML
programs. Recall that, for the purposes of our work, we take this data to be
Values.

Definition 4.4.6 (Interpreting Terms(Σt) terms over Values). Let σ and
σ′ be states of MLStates.

Let ι̂ be an interpretation of V ar by Values. We define ι to be the inductive
extension of ι̂ to all of Terms(Σp), so that, for any variable x ∈ V ar and any
function f : T̄ → T ∈ Terms(Σp),

ι(x) = ι̂(x)

ι(f(a1, . . . , an)) = f(ι(a1), . . . , ι(an))

We write ι(t)σ′
σ ∈ V alues for the interpretation of t formed by extending

the interpretation ι̂ to all of Terms(Σt),

ι(t)σ′
σ = ι′(t)
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where ι′ interprets every symbol si ∈ initial(t) (s ∈ StateRef) by the corre-
sponding initial state reference value σ(s), and similarly for final state refer-
ences:

ι′ = ι[̄i �→ σ(state−id(̄i))][f̄ �→ σ′(state−id(̄i))]

with ī and f̄ the lists of initial and final state reference identifiers, initial(t)
and final(t), respectively.

Lemma 4.4.1. Let a and b be elements of Terms(Σt), σ, σ′ be states and ι
some interpretation. Then

ι(a)σ′
σ �Σp ι(b)σ′

σ ⇔ a �Σt b

Proof. By induction on the possible forms of a, using the fact that the opera-
tional semantics of Σt has the same reduction rules as Σp, and treats the state
identifiers as irreducible symbols. ��

4.4.4 Truths about side-effect relations

We can define when a formula P is true of a particular side-effect transition
pair (σ, σ′), i.e., σ, σ′ ∈ MLStates.

The terms of IStateVal and FStateVal denote the initial and final values of
corresponding state identitifers for a side-effect relation. This leads to a formal
definition of when a formula is true of a side-effect transition pair.

We define a formula to be true of a side-effect relation when it is true of
every side-effect transition of the relation.

We required the following definition.

Definition 4.4.7 (Truth valuation function). Given the signature Σ =
〈S, TF, Pred〉 a truth valuation function is a map

h : Pred→ P(V alues)

where
(a1, . . . , an) ∈ h(P )

only when, for every predicate P in Preds1...sn
, we have that a1 : s1, . . . , an : sn.

Assumption 4.6. Our results will assume a fixed truth valuation function h for

Σp = 〈S, TF, Pred〉
Intuitively, this function tells us what elements of V alues the predicates from
Pred hold over.

Definition 4.4.8 (Truth about side-effects). Let G be a formula. Let ι be
an interpretation of terms of Terms(Σp) by elements of Values (formed by an
interpretation ι̂ of elements of V ar by elements of Values).

Let σ, σ′ ∈ MLStates.
We say that G is true of the side-effect (σ, σ′) under the interpretation ι,

written (σ, σ′) �ι G, when
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• if G is atomic, of the form P (a1, . . . , an), then

h(P ) � (ι(a1)σ′
σ , . . . , ι(an)σ′

σ )

• if G is (A ∨B), then

(σ, σ′) �ι A or (σ, σ′) �ι B

• if G is (A ∧B), then

(σ, σ′) �ι A and (σ, σ′) �ι B

• if G is (A⇒ B), then

(σ, σ′) �ι A entails (σ, σ′) �ι B

• if G is ∀x : t • P , then
(σ, σ′) �ι G[a/x]

for every a : t ∈ V alues.
• if G is ∃x : s • P , then

(σ, σ′) �ι G[a/x]

for some a : t ∈ V alues.
• it is never the case that (σ, σ′) �ι ⊥.
• it is always the case that (σ, σ′) �ι true.

Let R be an element of MLRel.
We say that G is true of R under interpretation ι, written R �ι G, when,

all (σ, σ′) ∈ R. (σ, σ′) �ι G

We say that G is true of R with initial state σ under ι, written R �σ
ι G

when, if σ R σ′, then
(σ, σ′) �ι G

We say that G is true of R with initial state σ, written R �σ G, when, for
every interpretation ι, R �σ

ι G.
We say that G is true of R, writing R � G, when, for every interpretation

ι, R �ι G.

Remark 4.17. The notion of truth given uses models which interpret
Terms(Σp) and Terms(Σt) by elements of Values. This is because Values terms
are the data used in SML, and we are primarily concerned with models that
are as close to SML implementation as possible.
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However, there is a wider range of models of Terms(Σp). It is possible to
interpret Terms(Σp) and Terms(Σt) over a range of models to arrive at a more
general definition of truth of formulae. This is the usual case when providing a
semantics for Hoare logic. See Remark 4.12 (p. 111) for a similar observation
about side-effect relations of IML.

The interested reader is referred to [Cou90] for a more general semantic
treatment of the formulae of Hoare logic given over a range of models of data.
It would be easy to adapt that treatment to our case.

4.5 Calculus

We now define a constructive version of Hoare logic, which we call Intuitionistic
Hoare logic (IHL), for reasoning about side-effects of imperative programs in
SML.

Hoare logic is traditionally given with respect to a simple imperative pro-
gramming language and a language for expressing pre- and post-conditions
[Flo67, Hoa69]. In our case, IHL uses IML as the imperative programming lan-
guage, and the formulae WFF (Σt) for specifying pre- and post-conditions. The
programs were described in Sections 4.2 and 4.3 and the formulae were defined
in Section 4.4.

Hoare logic is often parametrized over a deductive system, usually classical
logic. For the purposes of adapting proofs-as-programs in later chapters, we will
instead use an intuitionistic deduction system, based on that given in Chapter
2 of Part II.

4.5.1 Program/formula pairs

The theorems of our calculus involve program/formula pairs of the form

p �A

consisting of a program p ∈ IML and a formula A from WFF (Σt). We shall
refer to the set of such pairs as Pairs(IHL).

Formally, the meaning of program/formula pair in our calculus is given by
an interpretation of Terms(Σt).

Definition 4.5.1 (Truth of program/formula pair). We say that a formula
p �A is true for an interpretation τ when

[[p]] �τ A

(Recall the semantic valuation map [[.]] was defined on p. 110 above.) We say
that p �A is true, if, and only if, p �A is true for every possible interpretation.

The formula is a true statement about the side-effect relation, [[p]], associated
with p provided that p terminates.
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4.5.2 Rules

Our calculus provides a set of rules for constructing new true program/formula
pairs from known true program/formula pairs.

The basic calculus is presented in Figs. 4.7 and 4.8. The former rules are
the basic rules of Hoare logic, while the latter are rules for intuitionistic logic.

The basic rules are used to construct new programs and new truths about
the programs from old.
Remark 4.18. The rule (seq) of the logic enables us to build a new program
(p; q) and a new truth A[s̄i/v̄] ⇒ C[s̄f/v̄] about the program from known
truths A[s̄i/v̄]⇒ B[s̄f/v̄] and B[s̄i/v̄]⇒ C[s̄f/v̄] about the subprograms p and
q respectively.

The (loop) and (ite) rules are similar.
Remark 4.19. The (assign) permits us to make a simple assertion about assign-
ment statements: that is, given a program s := v we know that the final value
of s must be equal to v.

Remark 4.20. Our version of Hoare logic is concerned with so-called partial
correctness of statements about programs [Cou90]. Given a theorem, the formula
is true about the program, assuming that the program terminates. However, the
logic is not equipped with a means to prove program termination. In particular
the (loop) rule does not prove termination of the while-loop of the conclusion.
This can be rectified by considering a version of Hoare logic for total correctness.
That version of Hoare logic is well understood, but is complicated, for our
current purpose of adapting proofs-as-programs. We limit ourselves to partial
correctness, and leave the extension to total correctness as future work.

Remark 4.21. It will be shown that all theorems are true, by the soundness
property, which is proved in the next chapter.

The (ite) and (loop) rules require the map tologici, which transforms a SML
boolean function b into a Terms(Σt) boolean term, for use in formulae. The
map replaces all dereferenced state references of the form !s with initial state
identifiers of the form si.

Definition 4.5.2. Given any term b, we define

tologici(b) = b[s̄i/!s̄]

where !s̄ is every dereferenced state reference in b, and s̄i the corresponding list
of initial state identifiers.

We also define
tologicf(b) = b[s̄f/!s̄]

where !s̄ is every dereferenced state reference in b, and s̄f the corresponding
list of final state identifiers.
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�IHL s := v � sf = tologici(v)
(assign)

where s ∈ StateRef.

�IHL p � (tologici(b) = true ⇒ C) �IHL q � (tologici(b) = false ⇒ C)
�IHL if b then p else q � C

(ite)

�IHL p � (A[s̄i/v̄] ⇒ B[s̄f/v̄]) �IHL q � (B[s̄i/v̄] ⇒ C[s̄f/v̄])
�IHL p; q � (A[s̄i/v̄] ⇒ C[s̄f/v̄])

(seq)

where A and B are free of state identifiers.

�IHL q � (tologici(b) = true ∧ A[s̄i/v̄]) ⇒ A[s̄f/v̄]
�IHL while b do q � A[s̄i/v̄] ⇒ (A[s̄f/v̄] ∧ tologicf(b) = false)

(loop)

where A is free of state identifiers.

�IHL p � P �Int (P ⇒ A)
�IHL p � A

(cons)

Intuitionistic deduction �Int is given in Fig. 4.8.

Fig. 4.7. The basic rules of IHL.

The rule (cons) of Fig. 4.7 is given with respect to intuitionistic deduction
�Int, as described in Chapter 2, Section 2.2. We use the same rules but given
over formulae from WFF (Σt). The core, basic rules for �Int are repeated for
reference in Fig. 4.8.

The intutionistic rules are concerned with truths that are universal to all
programs. that is to say, they can be used to infer properties that hold over any
side-effect.
Example 4.7. For instance, an application of the logical (∧-I) rule

sf = si ∗ 2 �Int sf ≥ si sf = si ∗ 2 �Int Even(sf )
sf = si ∗ 2 �Int sf ≥ si ∧ Even(sf )

(∧-I)

tells us that, for any program that makes sf = si ∗ 2 true, because it follows
that sf ≥ si and Even(sf ) must also be true, sf ≥ si ∧Even(sf ) must be true
of the program.

Remark 4.22. Our calculus is a form of natural deduction, using sequents to
represent proofs. The sequent format presentation of proofs is equivalent to a
“tree” format presentation (the former preferred when space needs to be con-
served, the latter preferred when the steps of a deduction need to be displayed
clearly). A sequent �IHL p � F is equivalent to the following tree format presen-
tation: ....

p � F
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Assume that x, y are arbitrary variables of sort s from signature Σ, and
that a and c are well-sorted terms of sort s.

A �Int A
(Ass-I)

∆, A �Int B

∆ �Int (A ⇒ B)
(⇒-I)

∆ �Int A ∆′ �Int (A ⇒ B)

∆, ∆′ �Int B
(⇒-E)

∆ �Int A

∆ �Int ∀x : s • A
(∀-I)

∆ �Int ∀x : s • A

∆ �Int A[c/x]
(∀-E)

x is free in A, not free in ∆

∆ �Int P [a/y]
∆ �Int ∃y : s • P

(∃-I)
∆1 �Int ∃y : s • P ∆2, P [x/y] �Int C

∆1, ∆2 �Int C
(∃-E)

where x is not free in C

∆ �Int A ∆′ �Int B

∆, ∆′ �Int (A ∧ B)
(∧-I)

∆ �Int (A1 ∧ A2)
∆ �Int A1

(∧-E1)
∆ �Int (A1 ∧ A2)

∆ �Int A2
(∧-E2)

∆ �Int A1

∆ �Int (A1 ∨ A2)
(∨-I1)

∆ �Int A2

∆ �Int (A1 ∨ A2)
(∨-I2)

∆ �Int A ∨ B ∆1, A �Int C ∆2, B �Int C

∆1, ∆2, ∆ �Int C
(∨-E)

∆ �Int ⊥
∆ �Int A

(⊥-E)

provided A is Harrop

Fig. 4.8. The basic rules of many-sorted intuitionistic logic, Int, ranging over
WFF (Σt).

4.5.3 Axioms and schemata

In addition to the rules described, our deduction system permits for use in the
intuitionistic subsystem and Hoare logic proper. We use axioms and schemata
to define knowledge about a problem domain by extra-logical constraints about
the behavior of signature terms.

We assume a set of axioms AX, which consists of two sets: a set of WFF (Σt)
formulae, AXInt and a set of pairs of IML programs and WFF (Σt) formulae,
AXBB . The former forms axioms used in the intuitionistic subsystem, while the
latter forms axioms about programs, used in the Hoare logic proper.

To use axioms from AXInt, we use the introduction rule
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A ∈ AXInt

�Int A
(Ax-I)Int

Similarly, to use axioms from AXBB , we have the rule

(p �A) ∈ AXBB

�IHL p �A
(Ax-I)BB

Assumption 4.7. We leave the set of axioms to be a parameter of our system,
to be specified for use in a particular domain. However, we shall assume that,
at least, axioms for (Heyting) integer arithmetic are included for reasoning in
the intuitionistic subset.

We use schemata rules as a metalogical device for generating (a potentially
infinite number of) axioms in AX.

Schemata for the intuitionistic subsystem are as defined in Chapter 2,
Part II, Definition 2.2.2, p. 34. We will require several standard intuitionis-
tic schemata for reasoning about equality and disjoint unions in lambda terms,
given in Fig. 4.9. These are the same as those schemata required for the intu-
itionistic logic of Chapter 2. These schemata provide a consistent theory about
notions of equality and properties of the lambda calculus. The schemata require
that we have an equality predicate for every basic sort.
Assumption 4.8. We require that, for every basic sort s from Σt (and conse-
quently from Σp), there is a binary equality predicate =s∈ Preds. The subscript
is omitted when there is no confusion regarding the sort.
Remark 4.23. A result of the schemata for equality is that, in the semantics of
IHL, the valuation function h is constrained as follows. For each =s and terms
a1 : s and a2 : s of Terms(Σt), any interpretation function ι and states σ and
σ′:

h(=s) � (ι(a1)σ′
σ , ι(a2)σ′

σ )

if, and only if,
a1 �Σt a2

By Lemma 4.4.1, this can be shown to be equivalent to the condition that

ι(a1)σ′
σ �Σp ι(a2)σ′

σ

We also use schemata to generate program/formula pair axioms in AXBB .
These are particularly useful when we wish to define how a black-box program
from BB will react to input. The general form of a schema is as follows.

Definition 4.5.3 (Schemata for parametrized black-box programs).
Let f be a black-box program of BBs1...sn,s, parametrized over arguments of
types (s1, . . . , sn). Let x̄ be a list of n term variables x1, . . . , xn.

A black-box schema is of the form
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�IHL f(x1, . . . , xn) � F
R[x̄]

where R is the name of the schema. An application of the schema is

�IHL f(a1, . . . , an) � F
R[ā]

where ā is a list of n terms a1, . . . , an of sorts s1, . . . , sn.

�Int u =s r ⇒ r =s u
(ref)

where s is a basic sort

P [r/y] ∧ u =s r

P [u/y]
(subst)[[P ]; [u; r]; [s]]

where u and r are well-sorted of basic sort s and
y is the only free variable in P

�Int ∀y1 : s1 • P [Inl (y1)/x] ∧ ∀y2 : s2 • P [Inr (y2)/x]
�Int ∀x : s1|s2 • P

(disj-ind)[P ; [s1; s2]]

�Int Inl (u) = Inl (r)
�Int u =s1 r

(union=1)[[u; r]; [s1; s2]]

where Inl (u) and Inl (r) are well-sorted terms of sort (s1|s2)

�Int Inr (u) = Inr (r)
�Int u =s1 r

(union=2)[[u; r]; [s1; s2]]

where Inr (u) and Inr (r) are well-sorted terms of sort (s1|s2)

�Int Inl (u) = Inr (r) ⇒ ⊥ (union�=)[[u; r]; [s1; s2]]

where u and r are well-sorted terms of sorts s1 and s2 respectively

Fig. 4.9. Equality schemata and schemata for reasoning about disjoint unions.

4.5.4 Intuitionistic Hoare logic as a natural deduction system

Our calculus is a natural deduction system, in the sense identified by the Curry–
Howard protocol of Definition 3.2.2, Chapter 3, Part II, p. 82.

IHL = 〈Pairs(IHL),�IHL, DR(IHL)〉

where DR(IHL) consists of the rules that define �IHL. Observe, however, that
�IHL and DR(IHL) are dependent on the deduction system for Int:

IHL = 〈WFF (Σt),�Int, DR(Int)〉



4.5 Calculus 123

where DR(Int) consists of the rules that define �Int.
Recall that Definition 3.2.2 takes a deduction system to be a means of prov-

ing “statements.” In the case of IHL, these statements are program/formula
pairs. This will be significant in the next chapter, when we define a type the-
ory for IHL, in the style of constructive type theories satisfying the Curry–
Howard isomorphism for intuitionistic logic. In that work, we shall represent
program/formula pairs as types.

4.5.5 Example: electronic banking system

We illustrate Hoare logic with a medium sized example, involving code for part
of an electronic banking system. We shall return to this example in the next
two chapters, to show how proofs-as-programs methodology can be applied.

Consider an Automatic Bank Teller machine (ATM) example with the fol-
lowing domain conditions:

• The ATM permits the user to enter a Personal Identification Number (PIN)
and to withdraw money. In order to withdraw money, the user must enter
their PIN and a database connection to the bank’s server must be made.
The machine has a screen on which it displays messages to the user.

• The integer state reference pin stores the PIN entered by the user, the
boolean state reference canWithdraw stores a flag to determine whether or
not the user may withdraw money from the machine, and the boolean state
reference isConnected stores a flag to determine whether or not there is a
connection to the bank’s server.

• We use the predicate AppMessage(m) to assert that a string m is an ap-
propriate message to display on the screen for the user, given that the ATM
is in some particular state.

• There is a program p satisfying the following property. Given the user has
entered their PIN correctly, the program allows the user to withdraw money.
This property is formally given by an axiom

�IHL p � PINCorrect(pini)⇒ canWithdrawf = true

• There is a program q such that, if the user is permitted to withdraw money,
then a database connection is established, and also it is the case that there is
an appropriate message that can be displayed. These properties are formally
given by the axiom

�IHL q � canWithdrawi = true⇒
(isConnectedf = true ∧ ∃x : string •AppMessage(x))

For the sake of argument, we simplify our domain with the following as-
sumptions:
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• We assume two SML record datatypes have been defined, user and account.
Instances of the former contain information to represent a user in the system,
while instances of the latter represent bank accounts. We do not detail the
full definition of these types.
However, we assume that an account record type that contains a user ele-
ment in the owner field to represent the owner of the account. So the owner of
the account element myAccount : account is accessed by myAccount.owner.
We also assume that user is an equivalence type in SML, so that its elements
may be compared using the boolean valued comparison function =.
We assume a constant currentUser : user that represents the current user
who is the subject of the account search.

• The database is represented in SML as an array of accounts,

db : account array

Following the SML API, the array is 0-indexed, with the ith element accessed
as

sub(db, i)

and the size of the array given as

length db

Assume we have an array of size Size, called accounts. Although SML
arrays are mutable, for the purposes of this example, we will consider db to
be an immutable value. Consequently, it will be represented in our logic as
a constant.

• We assume a state reference counter : int ref, to be used as a counter in
searches through the database.

We take a predicate

allAccountsAt(u : user, x : account list, y : int)

whose meaning is that x is a list of all accounts found to be owned by the user
u, up to the point y in the database db. The predicate defined by the following
axioms in AX

∀u : user • ∀x : (account list) • ∀y : int • (allAccountsAt(u, x, y)⇒
(∀z : int • z ≤ y ⇒ sub(db, z).owner = u)) (4.3)

∀u : user • ∀x : (account list) • ∀y : int•
((y < (length db)− 1) ∧ sub(db, y + 1).user = u ∧ allAccountsAt(u, x, y))⇒

allAccountsAt(u, sub(db, y + 1) :: x, y + 1) (4.4)
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∀u : user • ∀x : (account list) • ∀y : int•
(y < (length db)− 1 ∧ ¬sub(l, y + 1).user = u ∧ allAccountsAt(u, x, y))⇒

allAccountsAt(u, x, y + 1) (4.5)

∀u : user • ∀y : int • y = 0⇒ allAccountsAt(u, [], y) (4.6)

Observe that these are intuitionistic axioms, for use in intuitionistic deduction,
and so they do not involve programs. However, deductions that use these axioms
can be used within the Hoare logic by means of the (cons) rule.

We will develop a program that satisfies the following property: given a
user’s details, it is possible to obtain a list of all accounts held at the bank
by the user, by searching through the database. This is formally stated as the
following requirement

∃y : (account list) • listAllAccounts(currentUser, y, counterf ) ∧
(counterf < (length db)− 1) = false (4.7)

The post-condition requirement of counterf signifies that a complete search of
the database should be completed by the program.

The previous axioms are Harrop. We also have a non-Harrop axiom

y < (length db)− 1⇒ sub(l, y + 1).owner = u ∨ ¬sub(l, y + 1).owner = u
(4.8)

From (4.4), (4.5) and (4.8), we can derive an intuitionistic proof of the form

y < (length db)− 1, allAccountsAt(u, x, y)
�Int ∃l : (account list) • allAccountsAt(u, l, y + 1) (4.9)

By assuming ∃l : (account list) • allAccountsAt(u, l, y), we can apply (∃-E)
on (4.9) and then obtain

�Int ∀y : int • ∀u : user•
(y < (length db)− 1) ∧ ∃l : (account list) • allAccountsAt(u, l, y)⇒

∃l : (account list) • allAccountsAt(u, l, y + 1) (4.10)

We can transform (4.10) into

�Int ∀y : int • ∀v : int • v = y + 1⇒ ∀u : user•
(y < (length db)− 1) ∧ ∃l : (account list) • allAccountsAt(u, l, y)⇒

∃l : (account list) • allAccountsAt(u, l, v) (4.11)

We then instantiate (4.12) with counteri and counterf and currentUser for y,
v and u, to give
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�Int counterf = counteri + 1⇒ (counteri < (length db)− 1) ∧
∃l : (account list) • allAccountsAt(currentUser, l, counteri)⇒
∃l : (account list) • allAccountsAt(currentUser, l, counterf ) (4.12)

We also have the following, by the (assign) rule of Hoare logic:

� counter :=!counter + 1 � counterf = counteri + 1 (4.13)

And so, by applying (cons) to (4.13) and (4.12),

� counter :=!counter + 1 � (counteri < (length db)− 1) ∧
∃l : (account list) • allAccountsAt(currentUser, l, counteri)⇒
∃l : (account list) • allAccountsAt(currentUser, l, counterf ) (4.14)

Then we apply (loop) to (4.14)

� while !counter < (length db)− 1 do counter :=!counter + 1 �
∃l : (account list) • allAccountsAt(currentUser, l, counteri)⇒
∃l : (account list) • allAccountsAt(currentUser, l, counterf ) ∧

(counterf < (length db)− 1) = false (4.15)

From the axiom (4.6) we can derive

�Int counterf = 0⇒
∃y : (account list) • allAccountsAt(currentUser, y, counterf ) (4.16)

By application of (assign)

� counter := 0 � counterf = 0 (4.17)

Then, applying (cons) to (4.17) and (4.16) gives

counter := 0 �
∃y : (account list) • allAccountsAt(currentUser, y, counterf ) (4.18)

This can be weakened to include a true hypothesis true:

counter := 0 � true⇒
∃y : (account list) • allAccountsAt(currentUser, y, counterf ) (4.19)

So, using (seq) on (4.19) and (4.15), we can obtain
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� counter :=!counter + 1;
while !counter < (length db)− 1 do counter :=!counter + 1 �

true⇒ ∃y : (account list) • allAccountsAt(currentUser, y, counterf ) ∧
(counterf < (length db)− 1) = false (4.20)

which can be simplified to the required form

� counter :=!counter + 1;
while !counter < (length db)− 1 do counter :=!counter + 1 �
∃y : (account list) • allAccountsAt(currentUser, y, counterf ) ∧

(counterf < (length db)− 1) = false (4.21)

The program of this pair satisfies the specification (4.7).

Remark 4.24. We shall return to this example in the following chapters. By
adapting proofs-as-programs to IHL, it is possible to augment the imperative
program of (4.21) with a side-effect-free return value function. The return value
satisfies the specification (4.7), according to a notion of realizability adapted
from the functional program synthesis of Chapter 2, Part II. Essentially, when
viewed as a specification of a return value, (4.7) requires a program that, given
a user’s details, will search through a database to obtain all accounts held at
the bank by the user, and then return this list.

In Chapter 5, we will define a logical type theory that can encode proofs of
IHL in the style of the Curry–Howard isomorphism. Section 5.3 of that chapter
will show how our example proof is represented in this way. Then, in Chapter
6, we will formally define return value realizability of IHL and provide a method
of program extraction, returning to our example (in Section 6.4) to synthesize
an imperative program (with correct side-effects and return values) from this
proof.

4.6 Comparison to Hoare logic with triples and its
extensions

We make some brief observations about IHL and its relation to the original
Hoare logic and its variants. This section may be skipped by readers interested
only in using our calculus for program extraction. It is a necessary preliminary
for the discussion of completeness of SSL given in the next chapter.

4.6.1 Single formula versus Hoare triples

We have chosen to present our logic using program/formula pairs rather than
the original Hoare triples. We choose to do this, because, in the next chapter,
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we will present a logical type theory of IHL, where program/formula pairs are
treated as types. Then, in Chapter 6, we will use the Skolem form of a formula
in a pair to define how the formula specifies a required return value for the
program. It is more convenient to use a single formula in these cases.

Single formulae with initial and final state identifiers are common in program
specification methodologies, such as OCL [WK98] or the B-method [Abr96].
Hoare logics in which post-conditions of triples are predicates involving initial
and final state identifiers are used in, for instance, [HH86, HHH+87, HHS87].
Also, program/formula pairs are sometimes a more convenient notation com-
pared to triples [AL97].

4.6.2 Hoare triples

However, it is possible to show that our calculus is equivalent to a Hoare logic
that uses triples, TIHL. We briefly sketch TIHL and outline how the equivalence
holds.

4.6.3 Terms

Our terms consist of the lambda calculus built from Σp, extended by extra
symbols to refer to values of state identifers for a particular point in a program’s
execution (not initial and final points, as was the case for terms of Terms(Σt)
above).

The set of terms Terms(TIHL) consists of Terms(Σp) inductively extended
by StateRef, treated as special constant symbols.

Our terms are defined as follows.

Definition 4.6.1 (Elements of Terms(Σt∗)). We define the signature of our
terms to be

Σt = 〈S, TF ∪ StateVal, P red〉
formed from Σp extended by StateRef treated as constant function symbols.

Then we define Terms(Σt∗) according to the grammar of Fig. 4.1, p. 98.

Remark 4.25. Terms(Σt) is a lambda calculus equipped with the usual notion
of free and bound variables.

Sort inference rules of terms Terms(Σt∗) are given by the the inference rules
for Terms(Σp), augmented with a rule for dealing with initial and final state
references:

s ∈ StateRef and StateType(s) = T

∅ � s

We define tologic∗ to be a map from Values to Terms(Σt∗) so that,
tologic∗(t) consists of t with every dereferenced state reference !s replaced by
the corresponding state reference s.

The formulae of TIHL are WFF (Σt), the first-order many-sorted formulae
that use terms from Terms(Σt∗). Intuitively, these formulae make statements
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about the state of a program at a particular point in the program’s execution.
In contrast to the formulae of WFF (Σt), we cannot make assertions about
initial and final states within the same formula. Instead, such statements are
made using the formulae in a Hoare triple.

Hoare triples are defined to be of the form

{A}p{B}

where A, B are well-formed formulae of Formula(TIHL), and p is a program
of IML. Intuitively, A and B are statements about the state of the abstract
machine. The triple is correct for a terminating p, if whenever A is true prior
to executing p, then B will be true afterwards.

4.6.4 Calculus

The core rules of Hoare logic TIHL are given in Fig. 4.10. As in the case of IHL,
these rules are defined with respect to the intuitionistic deduction of Fig. 4.8,
but now with formulae taken from WFF (Σt∗). We use the same rules that
define �Int, now given over formulae from WFF (Σt∗), to define a deduction
relation �Int(TIHL).

�TIHL {true}s := v{s = tologic∗(v)} (assign t)

where s ∈ StateRef.

�TIHL {B ∧ tologic∗(b) = true}p{C} �TIHL {B ∧ tologic∗(b) = false}q{C}
�TIHL {B}if b then p else q{C} (ite t)

�TIHL {A}p{B} �TIHL {B}q{C}
�TIHL {A}p; q{C} (seq t)

�TIHL {tologic∗(b) = true ∧ A}w{A}
�TIHL {A}while b do q{A ∧ tologic∗(b) = false} (loop t)

�TIHL {A′}p{B′} A′ �Int(TIHL) A B′ �Int(TIHL) B

�TIHL {A}p{B} (cons t)

Intuitionistic deduction �Int(TIHL) is given by the same rules that define �Int in
Fig. 4.8, but now ranging over formulae from WFF (Σt∗).

Fig. 4.10. Rules of the Hoare calculus with the triple notation.
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4.6.5 Equivalence of Hoare triples to program/formula pairs

Any Hoare triple can be mapped to a program/formula pair and vice versa, in
such a way that provability is preserved. That is to say, we can give a bijection φ
from triples {A}p{B} to pairs p �F such that provability of triples is preserved
as provability of pairs, and vice versa.

Assume that s̄ is a list that, at least, includes all elements of StateRef that
occur in A and B, with s̄i and s̄f being the corresponding lists of initial and
final state identifiers, then we define φ by

φ({A}p{B}) = p � (A[s̄i/s̄]⇒ B[s̄f/s̄])
φ−1(p � F ) = {x̄ = s̄}p{F [s̄/s̄f ][x̄/s̄i]}

The following theorem tells us that φ preserves triple provability in TIHL as
program/formula provability in IHL.

Theorem 4.6.2 (φ preserves provability). Take any program p and any
formulae of P and Q of WFF (Σt∗).

�TIHL {P}p{Q} entails �IHL p � φ({P}p{Q})
Proof. By induction on the length of the proof Γ �TIHL {P}p{Q}.

Case: proof ends in (assign). Assume {P}p{Q} is of the form
{true}s := v{s = tologic∗(v)}, deduced by (assign t):

�TIHL {true}s := v{s = tologic∗(v)} (assign t)

We are required to show

�IHL s := v � true⇒ sf = tologicf(v) (4.22)

By applying the (assign) rule of IHL, we have

�IHL s := v � sf = tologicf(v)
(assign)

(4.23)

We have the following intuitionistic proof:

sf = tologicf(v) �Int sf = tologicf(v)
(Ass-I)

true �Int true
(Ass-I)

sf = tologicf(v), true �Int sf = tologicf(v) ∧ true
(∧-I)

sf = tologicf(v), true �Int sf = tologicf(v)
(∧-E2)

sf = tologicf(v) �Int true⇒ sf = tologicf(v)
(⇒-I)

(4.24)

We apply (cons) to 4.23 and 4.24 to obtain 4.22, as required.
Case: proof ends in (ite t). Assume {P}p{Q} is of the form

{B}if b then p else q{C}
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deduced by (ite t):

�TIHL {B ∧ tologic∗(b) = true}p{C}
�TIHL {B ∧ tologic∗(b) = false}q{C}
�TIHL {B}if b then p else q{C} (ite t)

Let s̄ be a list that includes all elements of StateRef that occur in B and C,
with s̄i and s̄f being the corresponding lists of initial and final state identifiers.

We are required to show

�IHL if b then p else q �B[s̄i/s̄]⇒ C[s̄f/s̄] (4.25)

By the IH, we have

�IHL p �B[s̄i/s̄] ∧ tologici(b) = true⇒ C[s̄f/s̄] (4.26)
�IHL q �B[s̄i/s̄] ∧ tologici(b) = false⇒ C[s̄f/s̄] (4.27)

It is easy to prove the following using the intuitionistic calculus:

B[s̄i/s̄] ∧ tologici(b) = true⇒ C[s̄f/s̄], tologici(b) = true

�Int B[s̄i/s̄]⇒ C[s̄f/s̄] (4.28)

B[s̄i/s̄] ∧ tologici(b) = false⇒ C[s̄f/s̄], tologici(b) = false

�Int B[s̄i/s̄]⇒ C[s̄f/s̄] (4.29)

By applying the (cons) rule to (4.26) and (4.28), and to (4.27) and (4.29),
we obtain

�IHL tologici(b) = true⇒ (p �B[s̄i/s̄]⇒ C[s̄f/s̄]) (4.30)
�IHL tologici(b) = false⇒ (q �B[s̄i/s̄]⇒ C[s̄f/s̄]) (4.31)

Application of (ite) to (4.30) and (4.31) gives us (4.25), as required.
Case: proof ends in (seq t). Assume {P}p{Q} is of the form {A}p; q{C},

deduced by (seq t):

�TIHL {A}p{B} �TIHL {B}q{C}
�TIHL {A}p; q{C} (seq t)

Let s̄ be a list that, at least, includes all elements of StateRef that occur in
A, B and C, with s̄i and s̄f being the corresponding lists of initial and final
state identifiers

We are required to show

�IHL p; q � (A[s̄i/s̄]⇒ C[s̄f/s̄]) (4.32)

By the IH, we know that
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�IHL p � (A[s̄i/s̄]⇒ B[s̄f/s̄]) (4.33)
�IHL q � (B[s̄i/s̄]⇒ C[s̄f/s̄]) (4.34)

We can then apply (seq) to (4.33) and (4.34) to obtain (4.32), as required.
Case: proof ends in (loop t). Assume {P}p{Q} is of the form

{A}while b do q{A ∧ tologic∗(b) = false}, deduced by (loopt):

�TIHL {tologic∗(b) = true ∧A}w{A}
�TIHL {A}while b do q{A ∧ tologic∗(b) = false} (loop t)

We are required to show

�IHL while b do q �A[s̄i/v̄]⇒ A[s̄f/v̄] ∧ tologicf(b) = false (4.35)

Let s̄ be a list that includes all elements of StateRef that occur in A, with
s̄i and s̄f being the corresponding lists of initial and final state identifiers

By the IH, we know

�IHL q � (tologici(b) = true ∧A[s̄i/v̄]⇒ A[s̄f/v̄]) (4.36)

We can easily prove the following:

tologici(b) = true ∧A[s̄i/v̄]⇒ A[s̄f/v̄], tologici(b) = true ∧A[s̄i/v̄] �Int A[s̄f/v̄]
(4.37)

Then, applying (cons) to (4.36) and (4.37) gives

tologici(b) = true ∧A[s̄i/v̄] �Int q �A[s̄f/v̄] (4.38)

Then, applying (loop) to (4.38) will give the required conclusion (4.35).
Case: proof ends in (cons t). Assume {P}p{Q} is of the form {A}p{B}

obtained from an application of (cons t):

�TIHL {A′}p{B′} A′ �Int(TIHL) A B′ �Int(TIHL) B

�TIHL {A}p{B} (cons t)

Let s̄ be a list that includes all elements of StateRef that occur in A, B, A′

and B′ with s̄i and s̄f being the corresponding lists of initial and final state
identifiers

We are required to show

�IHL p � (A[s̄i/s̄]⇒ B[s̄f/s̄]) (4.39)

By the IH, we know

�IHL p � (A′[s̄i/s̄]⇒ B′[s̄f/s̄]) (4.40)

Now, we can transform any proof M �Int(TIHL) N into Int proofs: M [s̄i/s̄] �Int

N [s̄i/s̄] and M [s̄f/s̄] �Int N [s̄f/s̄], where s̄ is the list of all StateRef elements
that occur in M and N .
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So we have the following Int proofs

A′[s̄i/s̄] �Int) A[s̄i/s̄] (4.41)
B′[s̄f/s̄] �Int) B[s̄f/s̄] (4.42)

Using (4.41) and (4.42), it is easy to derive

A′[s̄i/s̄], B′[s̄f/s̄] �Int) A[s̄i/s̄] ∧B[s̄f/s̄] (4.43)

We arrive at the required conclusion (4.39) by applying (cons) to (4.40) and
(4.43).

This last case concludes the proof. ��
The following theorem tells us that φ−1 preserves triple provability in TIHL

as program/formula provability in IHL.

Theorem 4.6.3 (φ−1 preserves provability). Take any program p and any
formulae of P of WFF (Σt).

�IHL p � P entails �TIHL φ−1(p � P )

Proof. By induction on the form of the length of the proof of

�IHL p � P

The proof is symmetric to that of Theorem 4.6.2. ��

4.6.6 Axioms and schemata

The axioms and schemata of ADT can still be used in TIHL to reason about
ADT in TIHL. It is a straightforward task to transform the axioms and schemata
rules of BB(ADT) into equivalent forms for use in TIHL using φ.

4.6.7 Nondeterministic assignment

Our calculus deals with the same imperative constructs as the original version
of Hoare Logic (that is, while-loops, conditional statements, sequencing and
assignment) [Hoa69]. However, unlike the original Hoare logic, we do not deal
with nondeterministic assignment. This construct could be added to our calculus
with minimal changes to our semantics. But this is a future research topic that
would extend the results of the next two chapters in order to deal with this
construct.
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4.6.8 Total correctness

Because this semantics of program/formula pairs is given over terminating pro-
grams, our version of Hoare logic is concerned with so-called partial correctness
of statements about programs [Cou90]. The original presentation of Hoare logic
dealt with partial correctness [Hoa69]. However, extensions have been made to
deal with total correctness, yielding a variant of Hoare logic that derives truths
about programs that always terminate [Hoa81]. This is a future research topic
for extending our calculus, and the results that follow in order to deal with total
correctness.

4.7 Discussion

This chapter presented a version of Hoare logic, called IHL, that

• uses constructive deduction for its internal logic, and
• reasons and constructs programs taken from an imperative subset of SML.

Our presentation employed program/formula pairs instead of the more tradi-
tional Hoare triples. We showed that the two presentations are equivalent, which
shall be the reason for this presentation is that it aids representation of IHL as
a type theory, in the style of the Curry–Howard isomorphism for intuitionistic
logic.

On its own the logic can be used to develop correct imperative programs
that satisfy pre- and post-condition specifications of side-effects. This is the
usual benefit of Hoare logic.

We extend this result, adapting the proofs-as-programs paradigm to IHL, to
develop correct SML programs that satisfy side-effect and return value specifi-
cations. This will be shown in the last chapter of this part (Chapter 6).

In order to arrive at that result, we must:

• Understand the semantics of IHL.
• Provide a type theoretic representation of IHL.

These topics are dealt with in the next chapter (Chapter 5).
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Properties of Intuitionistic Hoare Logic

In this chapter, we discuss important model- and proof-theoretic properties of
Intuitionistic Hoare Logic (IHL).

We outline a soundness proof for IHL, using the relational semantics and
the definition of the truth of a formula given in the previous chapter. We also
examine completness issues for IHL, which, like ordinary Hoare logic, is incom-
plete. As noted in the previous chapter, this semantics and notion of truth is
given over a specific model — a relational semantics that is close to actual
SML execution. This result is important for us: it tells us that theorems of IHL
produce true statements about SML program execution.

We next define a logical type theory for representing proofs in our logic. The
type theory is analogous to the constructive type theory for intuitionistic logic
described in Chapter 3. That is:

• A type represents a specification.
• A term for a type represents a proof of a specification.
• Our terms form a lambda calculus.
• Term reduction rules defines how redundancies in proofs may be removed.

Our logical type theory’s distinguishing feature is that its types are the pro-
gram/formula pairs of IHL. This logical type theory is important for the main
result of this part of the monograph, given in the next chapter, where we apply
the Curry–Howard protocol to extract imperative programs with return values
from IHL proofs.

We proceed as follows:

• Section 5.1 examines soundness and completeness issues for IHL.
• The logical type theory for IHL is defined in Section 5.2.
• A discussion and summary is provided in Section 5.4.
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5.1 Model theoretic properties

In this section we outline a soundness proof for IHL using the relational seman-
tics and the definition of the truth of a formula given in Chapter 4. As noted in
that chapter, this semantics and notion of truth is given over a specific model
— a relational semantics that is close to actual SML execution.

This result is important for us: it tells us that theorems of IHL produce true
statements about SML program execution.

It is possible to give a more general semantics of program execution, over a
wider range of models. Such a general semantics has been well understood by
other authors, and is outside the scope of this monograph. However, we briefly
discuss the form of the semantics. We then outline and discuss soundness and
completeness issues and results for the general semantics.

5.1.1 Soundness with respect to SML semantics

Recall the relational semantics for IML programs given in Chapter 4. It was
given over a set of states, MLStates, and maps from state references, StateRef ,
to Values (the closed, irreducible terms of Terms(Σp)). This semantics is close
to the actual execution of SML programs because it reflects the fact that SML
states store closed, side-effect-free terms. The relational semantics associates
terminating programs of IML with relations between pairs of states representing
the initial and final states of a program.

First, we show that intuitionistic proofs that use formulae from WFF (Σt)
allow us to infer truths about arbitrary side-effects. This means that we can
use the core rules of Int to reason about properties that are universal to all
programs.

Lemma 5.1.1. Let Γ be a set of assumption formulae G1, . . . , Gn and G a
formula such that there is a proof constructed from the core rules of Int

Γ �Int G

Take any interpretation ι and any two states σ, σ′ ∈MLStates.
Assume, for every i = 1, . . . , n,

(σ, σ′) �ι Gi

Then
(σ, σ′) �ι G

(In this case, we say that the sequent Γ �Int G is valid.)

Proof. Given a set of formulae H = {H1, . . . , Hm}, we write

V alid(H, ι, (σ, σ′))

for the assumption that, for every i = 1, . . . , m, for any relation R ∈MLRel,
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(σ, σ′) �ι Hi

So, the assumption of the lemma is

V alid(Γ, ι, (σ, σ′)) (5.1)

We proceed by induction on the length of the proof Γ �Int G.
(Ass-I). If G is derived by (Ass-I)

G �Int G
(Ass-I)

the IH tells us that

V alid({G}, ι, (σ, σ′)) entails (σ, σ′) �ι G (5.2)

But the requirement of (5.2) is satisfied by (5.1), and so we are done.
(∧-I). Assume G is of the form (A ∧B), and is derived by (∧-I)

Γ1 � A Γ2 � B

Γ1, Γ2 � (A ∧B)
(∧-I)

The IH and (5.1) make the following true: (σ, σ′) �ι A and (σ, σ′) �ι B. So, by
definition of �ι, (σ, σ′) �ι (A ∧B), as required.

(∧-E1). Assume G is of the form A1, and is derived by (∧-E1)

Γ �Int (A1 ∧A2)
Γ �Int A1

(∧-E1)

The IH and (5.1) make the following true: (σ, σ′) �ι (A1 ∧ A2). But then, by
definition of �ι, (σ, σ′) �ι A1, as required.

(∧-E2). This case is similar to the case of a proof ending in (∧-E1).
(⇒-I). Assume G is of the form (A⇒ B), and is derived by (⇒-I)

Γ, A � B

Γ � (A⇒ B)
(⇒-I)

The IH dictates that (σ, σ′) �ι A entails (σ, σ′) �ι B. So, in particular,
(σ, σ′) �ι (A⇒ B), as required.

(⇒-E). Assume Γ = Γ1 ∪ Γ2, and that our sequent is derived via (⇒-E):

Γ1 � (A⇒ B) Γ2 � A

Γ1, Γ2 � B
(⇒-E)

The IH over the second premise of the rule means that

if V alid(Γ2, ι, (σ, σ′)) holds, then (σ, σ′) �ι A (5.3)

and applying IH over the first premise gives



138 5 Properties of Intuitionistic Hoare Logic

if V alid(Γ1, ι, (σ, σ′)) holds, then (σ, σ′) �ι (A⇒ B) (5.4)

Assumption (5.1) entails V alid(Γ1 ∪ Γ2, ι, (σ, σ′)). This means that
V alid(Γ1, ι, (σ, σ′)), and, as a consequence of (5.4), (σ, σ′) �ι (A ⇒ B). By
definition, this means

(σ, σ′) �ι A entails (σ, σ′) �ι B (5.5)

We are required to show that (σ, σ′) �ι B holds. The IH entails that
V alid(Γ2, ι, (σ, σ′)). We instantiate (5.3) with this, to give (σ, σ′) �ι A and
hence

(σ, σ′) �ι A (5.6)

We then instantiate (5.5) with (5.6), to give (σ, σ′) �ι B, as required.
(∀-I). Assume G is of the form ∀x : t •A, and that the sequent is derived by

Γ � A
Γ � ∀x : t •A

(∀-I)

This rule requires that x : t �∈ FV (Γ ).
By the IH, for every interpretation η,

V alid(Γ, η, (σ, σ′)) entails (σ, σ′) �η A (5.7)

Take any x : t-variant ι′ (that is, any interpretation ι′ that differs from ι
only over x : t). By assumption (5.1), the fact that x : t �∈ FV (Γ ), we can prove

V alid(Γ, ι′, (σ, σ′)) (5.8)

Setting η to ι′ in (5.7), and then instantiating with (5.8),

(σ, σ′) �ι′ A

for every x : t-variant ι′ of ι, as required.
(∀-E). Assume G is A[a/x], derived by

Γ � ∀x : t •A
Γ � A[a/x]

(∀-E)

By the IH,

V alid(Γ, ι, (σ, σ′)) entails (σ, σ′) �ι ∀x : t •A (5.9)

Instantiating (5.9) with the assumption (5.1) yields (σ, σ′) �ι ∀x : t • A which
means that, for every x : t-variant ι′ of ι, (σ, σ′) �ι′ A. Take the x-variant
ι′ = ι[x �→ ι(a)σ′

σ ]. By the IH, (σ, σ′) �ι′ A. From this it is easy to show that
(σ, σ′) �ι A[a/x] for any ι, as required.

(∃-I). Assume G is of the form ∃x : t •A, and that the sequent is derived by
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Γ � A[a/x]
Γ � ∃x : t •A

(∃-I)

By the IH and (5.1),

(σ, σ′) �ι A[a/x] (5.10)

Let ι′ be a x : t-variant of ι (that is, any interpretation ι′ that differs from ι
only over x : t), defined

ι′ = ι[x �→ ι(a)σ′
σ ]

From this and (5.10) we can derive (σ, σ′) �ι′ A. So, by definition of �ι,
(σ, σ′) �ι ∃x : t •A, as required.

(∃-E). Assume G is Q derived by

Γ1 �Int ∃y : t • P Γ2, P [x/y] �Int Q

Γ1, Γ2 �Int Q
(∃-E)

The rule requires that x : t does not occur free in Q or Γ2. By the IH and (5.1)
(σ, σ′) �ι ∃y : t • P . This means that there is a y : t-variant ι′ of ι such that

(σ, σ′) �ι′ P (5.11)

In turn, (5.11) entails that there is a x : t-variant ι′′ of ι such that

(σ, σ′) �ι′ P [x/y] (5.12)

Also, by the IH, for every interpretation η

V alid(Γ2, η, (σ, σ′)) and (σ, σ′) �η P [x/y] entails (σ, σ′) �η Q (5.13)

Because x : t does not occur free in Γ2, it is possible to derive from (5.1) that

V alid(Γ2, ι
′′, (σ, σ′)) (5.14)

So we can instantiate (5.13) with (5.14) and (5.12) to obtain

(σ, σ′) �ι′′ Q

but because x : t does not occur in Q, we have that

(σ, σ′) �ι Q

as required.
(∨-I1). Assume G is of the form (A1 ∨A2), and is derived by

Γ �Int A1

Γ �Int (A1 ∨A2)
(∨-I1)
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The IH and (5.1) make the following true: (σ, σ′) �ι A1. But then, by definition
of �ι, (σ, σ′) �ι (A1 ∨A2), as required.

(∨-I2). This case is similar to the case of a proof ending in (∨-I1).
(∨-E). Assume that Γ = Γ1 ∪ Γ2 ∪ Γ3 and G is of the form C, derived via

(∨-E)
Γ1 � (A ∨B) Γ2, A � C Γ3, B � C

Γ1, Γ2, Γ3 � C
(∨-E)

The IH entails that

V alid(Γ1, ι, (σ, σ′)) entails (σ, σ′) �ι (A ∨B) (5.15)
V alid(Γ2 ∪ {A}, ι, (σ, σ′), w) entails (σ, σ′) �ι C (5.16)

V alid(Γ3 ∪ {B}, ι, (σ, σ′)) entails (σ, σ′) �ι C (5.17)

Assumption (5.1) and the fact that Γ = Γ1 ∪ Γ2 ∪ Γ3 entail

V alid(Γ1, ι, (σ, σ′))
V alid(Γ2, ι, (σ, σ′))
V alid(Γ3, ι, (σ, σ′))

These statements satisfy the premises of (5.15), (5.16) and (5.17). So,

(σ, σ′) �ι (A ∨B) (5.18)
(σ, σ′) �ι A entails (σ, σ′) �ι C (5.19)
(σ, σ′) �ι B entails (σ, σ′) �ι C (5.20)

must hold.
By (5.18) and the definition of �, either (σ, σ′) �ι A or (σ, σ′) �ι B. We

argue over these two cases. Assume (σ, σ′) �ι A. This assumption, together
with (5.19), gives (σ, σ′) �ι C. For the other case, assume (σ, σ′) �ι B. This
assumption, together with (5.20), gives (σ, σ′) �ι C. Thus, we may conclude
that (σ, σ′) �ι C, as required.

(⊥-E). Assume that G is obtained via an application of (⊥−E)

Γ � ⊥
Γ � G

(⊥-E)

By the IH and (5.1), we know that (σ, σ′) �ι ⊥. By definition, this is never the
case. So, we can conclude anything (by a metalogical application of the classical
absurdity rule) (σ, σ′) �ι G, as required. ��

We are now able to give a soundness theorem for the core rules of IHL proofs
over our relational semantics.

Theorem 5.1.1 (Soundness). Let t be a terminating program and G be a
formula. Take any proof constructed from the core rules of IHL

�IHL t �G
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Take any interpretation ι. It is the case that

[[t]] �ι G

Proof. We proceed by induction on the derivation of Γ � t �G.
For a set of formulae ∆ and interpretation η, let V alid(∆, η) denote the

assumption that, for every D ∈ ∆,

for every R ∈MLRel, R �ι D

Assume
V alid(Γ, ι) (5.21)

Let σ, σ′ be any states such that

σ [[t]]σ′

We need only show that
(σ, σ′) �ι G

Our proof uses the definition of relational semantics (Chapter 4, Definition
4.3.4, Section 4.2, p. 110), which is given in terms of the operational semantics
(Chapter 4, Fig. 4.6, p. 108). Given any program p ∈ IML, if there are states
σ, σ′ ∈MLStates such that

〈p, σ〉�̂〈r, σ′〉
for some return value r ∈ IML, then

(σ, σ′) ∈ [[p]]

(ite). Assume that t �G is of the form w �C, Γ = Γ1 ∪Γ2 ∪Γ3, and that the
sequent is derived via (ite) as

�IHL tologici(b) = true⇒ C �IHL tologici(b) = false⇒ C

�IHL if b then p else q � C
(ite)

The IH and (5.21) entail that

[[p]] �ι tologici(b) = true⇒ C (5.22)
[[q]] �ι tologici(b) = false⇒ C (5.23)

The boolean function b ∈ Closed(Terms(IML)) is such that

σ(b) �Σp true

or
σ(b) �Σp false

We reason over these two possibilities.
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Case: σ(b) �Σp
true. By the operational semantics of if b then p else q,

we see that, because b �Σp
true holds,

[[if b then p else q]] = [[p]]

So (5.22) entails that

[[p]] �ι tologici(b) = true⇒ C (5.24)

Then, by definition of �ι, it must be the case that

(σ, σ′) �ι tologici(b) = true

This fact, (5.24) and the definition of �ι yield

(σ, σ′) �ι C

as required.
Case: σ(b) �Σp false. Similar to the previous case.
(loop). Assume t � G is of the form while b do q � A[s̄i/v̄] ⇒ (A[s̄f/v̄] ∧

tologicf(b) = false), whose derivation ends in (loop):

�IHL q � (tologici(b) = true ∧A[s̄i/v̄])⇒ A[s̄f/v̄]
�IHL while b do q �A[s̄i/v̄]⇒ A[s̄f/v̄] ∧ tologicf(b) = false

(loop)

The rule requires the following constraints that no state identifiers occur in A.
Assume that

(σ, σ′) �ι A[s̄i/v̄] (5.25)

By the IH, we know that,

[[q]] �ι (tologici(b) = true ∧A[s̄i/v̄])⇒ A[s̄f/v̄]

and so, for any τ, τ ′ such that τ [[q]]τ ′,

(τ, τ ′) �ι (tologici(b) = true ∧A[s̄i/v̄])⇒ A[s̄f/v̄] (5.26)

By assumption, while b do q terminates, so by the operational semantics,
either

1. σ = σ′ with σ(b) � false holds, or
2. there is an n > 0 such that

σ = σ0[[q]]σ1[[q]]σ2 . . . σn−1[[q]]σn

and

for every j, 0 ≤ j < n entails σj(b) �Σp true and σn(b) �Σp false
(5.27)
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In case 1), by definition of �ι,

(σ, σ′) �ι tologici(b) = false (5.28)

Also, because σ = σ′, (5.25) and the fact that there are no state identifiers in
A, we have that

(σ, σ′) �ι A[s̄f/v̄] (5.29)

So, (5.28) and (5.29) give

(σ, σ′) �ι A[s̄f/v̄] ∧ tologicf(b) = false (5.30)

Because we have assumed (5.25), the definition of �ι and (5.30) give us

(σ, σ′) �ι A[s̄i/v̄]⇒ (A[s̄f/v̄] ∧ tologicf(b) = false)

In case 2), the first clause of (5.27) entails that

(σi, σi+1) �ι (tologici(b) = true) (5.31)

for (0 < i < n− 1). We show

(σi, σi+1) �ι A[s̄f/v̄] (5.32)

by induction for i = 0, . . . , n− 1.
Base case. By (5.25), and the fact that state identifiers do not occur in A,

we have
(σ = σ0, σ1) �ι A[s̄f/v̄] (5.33)

This and (5.31) give us
(σ0, σ1) �ι A[s̄f/v̄]

as required.
Inductive step. Assume (5.32) holds for some k < n− 2:

(σk−1, σk) �ι A[s̄f/v̄] (5.34)

Because A does not contain any state identifiers, this is equivalent to writing

(σk, σk+1) �ι A[s̄i/v̄] (5.35)

This and (5.31) give us

(σk, σk+1) �ι (tologici(b) = true ∧A[s̄i/v̄]) (5.36)

Instantiating the IH (5.26) with (5.36) gives

(σk, σk+1) �ι A[s̄f/v̄]

as required, concluding the proof of (5.32).
Now, (5.32) means that, in particular,
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(σn−1, σn = σ′) �ι A[s̄f/v̄] (5.37)

Because A does not contain any state identifiers, this means

(σ, σ′) �ι A[s̄f/v̄] (5.38)

The second clause of (5.27) entails that

(σ, σ′) �ι tologicfb = false (5.39)

So, (5.38) and (5.39), together with the assumption (5.25) give

(σ, σ′) �ι A[s̄i/v̄]⇒ (A[s̄f/v̄] ∧ tologicf(b) = false)

as required.
(seq). Assume t � G is of the form p; q � A[s̄i/v̄] ⇒ C[s̄f/v̄] derived from a

proof ending in

�IHL p � (A[s̄i/v̄]⇒ B[s̄f/v̄]) �IHL q � (B[s̄i/v̄]⇒ C[s̄f/v̄])
�IHL p; q � (A[s̄i/v̄]⇒ C[s̄f/v̄])

(seq)

where A and B are free of state identifiers.
The IH tells us that

[[p]] �ι (A[s̄i/v̄]⇒ B[s̄f/v̄]) (5.40)

and
[[q]] �ι (B[s̄i/v̄]⇒ C[s̄f/v̄]) (5.41)

By the operational and relational semantics of p; q, we know that, because
σ[[p; q]]σ′, there is an intermediate state σ′′ such that

σ[[p]]σ′′[[q]]σ′

So, (5.40) entails
(σ, σ′′) �ι (A[s̄i/v̄]⇒ B[s̄f/v̄]) (5.42)

and (5.41) entails
(σ′′, σ′) �ι (B[s̄i/v̄]⇒ C[s̄f/v̄]) (5.43)

Assume
(σ, σ′) �ι A[s̄i/v̄] (5.44)

Because A does not contain any state identifiers, this means

(σ, σ′′) �ι A[s̄i/v̄] (5.45)

with which we may instantiate (5.42), to give

(σ, σ′′) �ι B[s̄f/v̄] (5.46)
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Because B does not contain any state identifiers, (5.46) means

(σ, σ′′) �ι B[s̄i/v̄] (5.47)

We instantiate (5.43) with (5.47), to give

(σ′′, σ′) �ι C[s̄f/v̄] (5.48)

Now, because C does not contain state identifiers, (5.48) entails

(σ, σ′) �ι C[s̄f/v̄] (5.49)

Because (5.49) follows from the assumption (5.44), we have

(σ, σ′) �ι A[s̄i/v̄]⇒ C[s̄f/v̄]

as required.
(cons). Assume t � G is of the form p � A, derived from a proof ending in

(cons):
�IHL p � P P �Int A

�IHL p �A
(cons)

By the IH, we know
(σ, σ′) �ι P (5.50)

Also, because P �Int A, by Lemma 5.1.1,

(σ, σ′) �ι P entails (σ, σ′) �ι A (5.51)

We instantiate (5.51) with (5.50), to give

(σ, σ′) � A

as required.
This last case concludes our proof. ��

5.1.2 Axioms and schemata

The proof of soundness is given over the core rules of IHL and Int. As discussed in
the previous chapter, these rules are to be used in conjunction with non-logical
axioms and schemata to reason about a domain problem and given black-box
IML programs.

Our soundness result can be easily extended to include proofs that involve
axioms and schemata, assuming that these are true. For instance, given an
intuitionistic axiom A ∈ AXInt, we must assume that

(σ, σ′) �ι A

for any interpretation ι and initial and final states σ and σ′. Similarly, given
an axiom about programs, (p � A) ∈ AXBB , we must assume that, for any
interpretation ι,

[[p]] �ι A

The axioms generated by schemata must also be subject to the same assump-
tions for soundness to be extended.
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5.1.3 Soundness and completeness over general models

The semantics of Hoare logic is usually given over a range of possible models
for imperative programs. Such semantics are well understood, and need not
be discussed in detail here. However, we make some salient remarks regarding
soundness and completeness issues for such a general semantics.

In our semantics, Values forms a term model of the data that we want to
store in the states. For our current purpose this semantics is sufficient, because
we wish to use a model of execution that is as close to SML implementation as
possible.

To achieve such a wider range of models, we could take different models of
Values, which, in turn, achieve different states for different models. In this way,
it is possible to give a more general relational semantics for IML, parametrized
over a range of possible models for Values.

Such a general semantics is given in [Cou90, pp. 897–898] for a Hoare logic
that uses triples. This semantics can easily be adapted to the logic TIHL of the
previous chapter. It defines a notion of when a triple is true for a model M of
Values, which we shall write as

M �Gen t {A}p{B}

and also when a single formula is true for a model, written as

M �GenInt t A

We can use this notion of truth to define truth for program/formulae pairs:

M �Gen p � P

holds whenever
M �Gen t φ−1(p � P )

Soundness

Soundness for Hoare logic was originally given in [Hoa69] for a general semantics
of this form. See [Cou90, pp. 901–902] for a proof of soundness over a general
relational semantics, based upon a proof by [Coo78]. This proof can be adapted
to TIHL, and therefore to a proof that, for all models of Values in the semantics,
obeys

�triple {A}p{B} entails M �Gen t {A}p{B} (5.52)

Then, by Theorem 4.6.3, p. 133, Section 4.6 of Chapter 4,

�IHL p � P entails �TIHL φ−1(p � P )

So we can use this to extend the proof of soundness over the general relational
semantics to proofs in IHL, using (5.52),
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�IHL p � P entails �TIHL φ−1(p � P )
entails M �Gen t φ−1(p � P )
entails M �Gen p � P

for any model M .

Completeness

Completeness means that every true statement is provable. The property for
completeness for TIHL is stated as follows:

�Gen t {A}p{B} entails �TIHL {A}p{B}

Completeness is not possible for Hoare logic.
The incompleteness for Hoare logic is deep rooted. This fact is not necessarily

a consequence of unprovability problems with the formulae used in Hoare logic
that might be inherited through the consequence rule. We can define versions
of TIHL in which all formulae (all pre- and post-conditions) are decidable, but
for which, for all models M , it is not the case that

M �Gen t {A}p{B} entails �TIHL {A}p{B}

See [Cou90, pp. 909–910] for a proof of this, based upon proofs of [GS78] and
[Wan78].

In our intuitionistic version of Hoare logic, we assume at least that the ax-
ioms equivalent to those of Heyting arithmetic are included for reasoning using
the consequence rule (cons) (Assumption 4.7 of the previous chapter, p. 121). So
we reason using statements whose truth values are undecidable. It was shown in
[Coo78] that the completeness of Hoare logic with Peano arithmetic is equivalent
to the semidecidability of the nonhalting problem. This can adapted to Heyting
arithmetic. So our version of Hoare logic is incomplete for this situation.

Cook defined a notion of relative completeness [Coo78], which holds for
Hoare logic, given some restrictions.

Relative completeness requires a notion of expressiveness of an interpretation
of commands and formulae in a model M . Intuitively, expressiveness entails
that,

• given a true triple involving sequential programs

M �Gen t {A}p; q{C}

we can always obtain an intermediate invariant formula B such that

M �Gen t {A}p{B}
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• given a true triple involving a loop

M �Gen t {A}while b do q{B}

we know that there is an intermediate invariant formula I such that

M �GenInt t (I ∧ tologic∗(b) = false)⇒ A

M �GenInt t B ⇒ (I ∧ tologic∗(b) = false)

and
M �Gen t {tologic∗(b) = true ∧ I}w{I}

Relative completeness states that, if

1. a model is expressive for TIHL, and
2. we restrict proofs within Int(TIHL) to known truths in the model, that is,

P for which
�Int(TIHL) P ⇔M �Int(TIHL) P

then
M �Gen t {A}p{B} entails �TIHL {A}p{B}

See [Cou90, 914–918] for a proof of this result.
As in the case of soundness for general models, we can easily adapt this

result to show a form of relative completeness for IHL, using the φ translation
between the triple notion for TIHL and the program/formula pair notion of IHL.

5.2 Proof-theory of Intuitionistic Hoare Logic

We shall define a logical type theory LTT (IHL) for representing proofs in IHL.
The main result of this part of the book, presented in the next chapter, is the
application of the Curry–Howard protocol to extract imperative programs, with
return values, from proofs in IHL. This section is therefore important, because
a logical type theory is an essential requirement for the protocol to be used.

Our type theory has analogous properties to the type theory for intuitionistic
logic described in Chapter 3. A type inference is of the form

�LTT (IHL) tw
P

where

• the type (w � P ) corresponds to a theorem of IHL, and
• the term t (called a “proof-term”) represents a proof of the theorem.



5.2 Proof-theory of Intuitionistic Hoare Logic 149

Similar to intuitionistic type theories, our type theory is a kind of lambda
calculus. In this sense our logic and logical type theory satisfy a form of the
Curry–Howard isomorphism. The distinguishing feature of this form of the iso-
morphism is that types are the program/formula pairs of IHL, whereas in the
intuitionistic case, types were simply formulae.

Because IHL uses an intuitionistic deductive system, Int, the theory
LTT (IHL) involves a corresponding separate type theory, LTT (Int). This the-
ory is the logical type theory for Int described in Chapter 3, but with types
now ranging over WFF (Σt) (first-order, many-sorted formulae with state iden-
tifiers) instead of the formula of ADT.

As with the Curry–Howard isomorphism for intuitionistic logic, we define
proof-term reduction rules that correspond to a proof normalization process.
The normalization strategy over IHL only involves normalization of the intu-
itionistic proofs used in the (cons) rule. Normalization is not done over the
basic, program building rules of IHL. As a result, strong normalization and the
Church–Rosser property follow trivially from the corresponding theorems for
Int.

5.2.1 Full form of the type theory for IHL

Written in full, our logical type theory LTT (IHL) is

LTT (IHL) = 〈PT (IHL), Pairs(IHL), (.)(.),�LTT (IHL), PTR(LTT (IHL)), �IHL〉
(see Definition 3.2.3, Chapter 3, p. 84 for the general form of a logical type
theory). The set of proof-terms are denoted by PT (IHL). Types are taken to
be pairs of IML programs and WFF (Σt) formulae, Pairs(IHL). Type infer-
ence given by �LTT (IHL) and rules PTR(LTT (IHL)), explained in Fig. 5.2. The
normalization relation �IHL is described in 5.2.7.

Following Definition 3.2.3 of Chapter 3, to be a logical type theory for IHL,
LTT (IHL) must be such that type inference in LTT (IHL) and deduction in IHL
are isomorphic, in the sense that

(there is a p ∈ PT (IHL) where �IHL pA)⇔ �IHL A

This isomorphism is proved in Theorem 5.2.5.
The elements of our type theory are now discussed in detail.

5.2.2 A logical type theory for Int

The definition of LTT (IHL) involves a logical type theory for Int, intuitionistic
proofs about WFF (Σt):

LTT (Int) = 〈PT (Int), WFF (Σt), (.)(.),�LTT (Int), PTR(LTT (Int)), �Int〉
Because WFF (Σt) is the same as Formula(Int) with terms expanded to include
state identifiers, and the inference rules are unchanged:
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• We can take proof-terms PT (Int) to be identical to those of PT (Int) (given in
Chapter 2), with the extension that existential witness terms v of show(v, a)
now range over elements of Terms(IHL), instead of Terms(ADT).

• We can retain the proof-term inference rules of LTT (Int), PTR(LTT (Int)).
• We can keep the normalization relation �Int defined by the rules used in

LTT (Int).

5.2.3 Proof-terms

The proof-terms of our logical type theory, PT (IHL), are intended to represent
proofs in IHL. Their grammar is given in Fig. 5.1. The grammar is given with
respect to a denumerable set of proof-term variables, V arPT (IHL).

The elements of PT (IHL) that represent proofs of the subsystem Int are also
displayed in Fig. 5.1.

5.2.4 Typing relation

Proof-terms represent proofs of program/formula pairs. This relationship is de-
fined by a typing relation between proof-terms and types. A typed proof-term
of our theory is written

pl
F

where p is a proof-term, l is a program of IML and F is a formula of WFF (Σt).
From a proof-theoretic perspective the rules of IHL define how we can use

proofs in the construction of larger proofs. Making this fact explicit, the rules
of IHL lead to the typing rules for LTT(IHL) given in Fig. 5.2.
Example 5.1. Consider the a proof in IHL that involves an application of the
(loop) rule

�IHL w � (tologici(b) = true ∧A[s̄i/v̄])⇒ A[s̄f/v̄]
�IHL while b do w � (A[s̄i/v̄]⇒ (A[s̄f/v̄] ∧ tologicf(b) = false))

(loop)

This application requires that a proof of the premise is given in order to con-
struct a proof of the conclusion. This construction is made explicit as the proof-
term wd(q) in the type inference

�LTT (IHL) qw
(tologici(b)=true∧A[s̄i/v̄])⇒A[s̄f /v̄]

�LTT (IHL) wd(q)while b do w
(A[s̄i/v̄]⇒(A[s̄f /v̄]∧tologicf(b)=false))
(loop)

with q the proof-term denoting the proof of the premise.
The (cons) rule is important. In IHL, this rule uses deduction in the intu-

itionistic subsystem Int to derive new truths about programs. In the logical type
theory, the corresponding type inference rule permits proof-terms of the subsys-
tem LTT (Int) to be used to construct new proof-terms, via the cons proof-term
operator.
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a, b, c ::= PT (Int), proof-terms of Int
x proof-term variable, x ∈ V arPT (IHL)

Axiom(A) intuitionistic axiom, A is a formula
Schema(N, [ē; F̄ ; t̄; S̄]) intuitionistic schema application, N is a

schema name, ē, F̄ , t̄ and S̄ are lists of
proof-terms, formulae, terms and sorts, re-
spectively

abstract x. a abstraction
app(a, b) application
use i. a ADT-abstraction, i ∈ V ar(Term)
specific(a, v) ADT-application, v ∈ Terms(IHL)
〈a, b〉 pair
fst(a) first projection
snd(b) second projection
inl(a) in left
inr(b) in right
case a of inl(x).b, inr(y).c case
abort(a, F ) abort, F ∈ WFF (Σt)
show(v, a) witness, v ∈ Terms(IHL)
select (a) in x.y.b select, x, y ∈ V arADT

a, b, c ::= PT (IHL), proof-terms of IHL
IHLAxiom(w � A) black-box axiom, w � A is a pro-

gram/formula pair
IHLSchema(N [ē]) black-box schema application, ē is a list of

terms and N is a schema name
assign(r, i) r a state reference and i a term
seq(d, e) sequence
ite(d, e) if-then-else
wd(d) loop
cons(d, a) consequence, a ∈ PT (Int)

Fig. 5.1. Syntax of proof-terms PT (IHL) for the calculus IHL.

Proof-terms for the subsystem LTT (Int) are written

pF

where p is a proof-term and F is a formula of WFF (Σt). The typing rules are
identical to those given in Chapter 2, Fig. 2.6, p. 38, but using the signature
Σt. For completeness, we repeat the typing rule in Fig. 5.3. See Section 2.3 of
that chapter for a deeper discussion of how these rules correspond to proofs in
the subsystem.
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�LTT (IHL) assign(s, v)s:=v	sf =tologici(v)
(assign)

where s ∈ StateRef

�LTT (IHL) q
l1	(tologici(b)=true⇒C)
1 �LTT (IHL) q

l2	(tologici(b)=false⇒C)
2

�LTT (IHL) ite(q1, q2)if b then l1 else l2	C
(ite)

�LTT (IHL) pw1	(A[s̄i/v̄]⇒B[s̄f /v̄]) �LTT (IHL) qw2	(B[s̄i/v̄]⇒C[s̄f /v̄])

�LTT (IHL) seq(pw1	(A[s̄i/v̄]⇒B[s̄f /v̄]), qw2	(B[s̄i/v̄]⇒C[s̄f /v̄]))w1;w2	(A[s̄i/v̄]⇒C[s̄f /v̄])
(seq)

where A and B do not contain any state identifiers

�LTT (IHL) qw	(tologici(b)=true∧A[s̄i/v̄])⇒A[s̄f /v̄]

�LTT (IHL) wd(q)while b do w	(A[s̄i/v̄]⇒(A[s̄f /v̄]∧tologicf (b)=false))
(loop)

where A does not contain any state identifiers

�LTT (IHL) qp	P
1 �LTT (Int) q

(P⇒A)
2

�LTT (IHL) cons(q1, q2)p	A
(cons)

Fig. 5.2. Type inference rules of LTT (IHL) corresponding to the structural rules of
Hoare logic IHL.

5.2.5 Axioms and schemata

We require that there are type inference rules for all axioms and schemata of
IHL and Int. These typing rules of LTT (IHL) and LTT (Int) are generated from
the corresponding rules of IHL and Int is the following way.

Definition 5.2.1 (Type inference for black-box axioms). Given an axiom
introduction rule (Ax-I)BB from IHL

(p �A) ∈ AXBB

�IHL p �A
(Ax-I)BB

we use the proof-term IHLAxiom(p � A) to denote an application of this rule,
with the corresponding type formation rule

(p �A) ∈ AXBB

�LTT (IHL) IHLAxiom(p �A)p
A
(Ax-I)BB

The type inference rule corresponding to an intuitionistic axiom rule (Ax-
I)Int is the same as that given for Int in Chapter 2, Definition 2.3.1, p. 37,
repeated here for completeness.

Definition 5.2.2 (Type inference for intuitionistic axioms). Given an
inference
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Assume that x, y are arbitrary variables of sort s, and that a and c are
well-sorted terms of sort s. We abbreviate the relation �LTT (Int) by �.

xA � xA
(Ass-I)

∆, xA � bB

∆ � abstract x. b(A⇒B)
(⇒-I)

∆ � aA ∆′ � p(A⇒B)

∆, ∆′ � app(p, a)B
(⇒-E)

∆ � pA

∆ � use x : s. p∀x:s•A
(∀-I)

∆ � p∀x:s•A

∆ � specific(p, c)A[c/x]
(∀-E)

x is free in A, not free in ∆

∆ � pP [a/y]

∆ � show(a, p)∃y:s•P
(∃-I) ∆1 � p∃y:s•P ∆2, x

P [x/y] � qC

∆1, ∆2 � C
(∃-E)

where x not occur free in C

∆ � aA ∆′ � bB

∆, ∆′ � 〈a, b〉(A∧B)
(∧-I)

∆ � p(A1∧A2)

∆ � fst(p)A1
(∧-E1)

∆ � p(A1∧A2)

∆ � snd(p)A2
(∧-E2)

∆ � pA1

∆ � inl(p)(A1∨A2)
(∨-I1)

∆ � pA2

∆ � inr(p)(A1∨A2)
(∨-I2)

∆ � pA∨B ∆1, x
A � aC ∆2, y

B � bC

∆1, ∆2, ∆ � case p of inl(x).a, inr(y).bC
(∨-E)

∆ � a⊥

∆ � abort(a)A
(⊥-E)

provided A is Harrop

Fig. 5.3. Type inference rules for the subsystem LTT (Int).

A ∈ AXInt

�Int A
(Ax-I)Int

we use the proof-term Axiom(A) to denote an application of this rule, with the
corresponding type formation rule

A ∈ AXInt

�LTT (Int) Axiom(A)A
(Ax-I)Int

Type inference rules corresponding to schemata of the intuitionistic subset
are of the same form as those given in Chapter 2, Definition 2.3.1, p. 38. We
repeat this definition for completeness. These are defined as follows.



154 5 Properties of Intuitionistic Hoare Logic

Definition 5.2.3 (General form of type inference rules for schemata).
Given a schema rule R[X̄; ȳ; Z̄] from Int, where X̄, ȳ and Z̄ are lists of variables
ranging over formulae, terms and sorts, respectively:

Γ1 �Int F1 . . . Γn �Int Fn

�Int F
R[X̄; ȳ; Z̄]

we define corresponding type formation schemata for proof-terms of the form

Schema(R, [[q1; . . . ; qn]; X̄; ȳ; Z̄])

written
�Int qF1

1 . . . �Int qFn
n

�Int Schema(R, [[q1; . . . ; qn]; X̄; ȳ; Z̄])F
R[X̄; ȳ; Z̄]

Definition 5.2.4 (General form of type inference rules for black-box
schemata). Let f be a black-box program of BBs1...sn,s, parametrized over
arguments of types (s1, . . . , sn). Let x̄ be a list of n term variables x1, . . . , xn.
Take a black-box schema

�IHL f(x1, . . . , xn) � F
R[x̄]

The corresponding type inference schema is

�LTT (IHL) IHLSchema(R[x̄])f(x1,...,xn)
F
R[x̄]

Take a IHL proof involving an application of the schema

�IHL f(x1, . . . , xn) � F
R[ā]

where ā is a list of n terms a1, . . . , an of sorts s1, . . . , sn. This corresponds to
an application of the type inference schema

�LTT (IHL) IHLSchema(R[ā])f(a1,...,an)
[a1,...,an/x1,...,xn]
R[ā]

5.2.6 The Curry–Howard correspondence

We now show that proof-terms of LTT(IHL) represent proofs of theorems in IHL.

Theorem 5.2.5 (Curry–Howard correspondence between LTT(IHL) and
IHL). The following properties hold

1. Given a natural deduction proof D of �IHL w �A, we can construct a proof-
term fw
A such that

�LTT (IHL) fw
A
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2. Given a proof-term fw
A such that

�LTT (IHL) fw
A

we can construct a natural deduction proof D of � w �A.

Proof. Item 1) is derived by straightforward induction on the structure of the
deduction D. Item 2) is given by induction on the structure of the inference
�LTT (IHL) fw
A. ��

5.2.7 Proof normalization

We can define a normalization strategy for removing redundant parts of IHL
proofs.

We do not define any reduction rules for applications of program/formula
inference rules of IHL. That is to say, applications of these rules never result in
redundant proof steps.

The only proof reductions that we apply are over the intuitionistic proofs,
which occur within IHL proofs because of the (cons) rule. As in intuitionis-
tic logic, normalization is done by matching applications of introduction and
elimination rules (see, e.g., [Gen69] or [GLT89] and also Chapter 2).

For example, a proof of the form

[A].... b

B
(A⇒ B)

(⇒-I)
.... a

A

B
(⇒-E)

involves the redundant use of a (⇒-I) followed by (⇒-E). The proof can be
simplified to .... a

A.... b

B

The normalization strategy for Int is given by defining a reduction relation
�Int over typed terms of LTT (Int). See Fig. 5.4 for the seven reduction rules
that constitute an inductive definition of �Int (previously given in Chapter 3).
The LHD and the RHD of a rule are called the redex and the reduct of the rule,
respectively.

We define �̂Int to be the transitive closure of the application of these rules.
When a�̂Intb holds, when b is obtainable from a by a sequence of replacements
of subterms using the rules of Fig. 5.4. In this case, we say that a is reducible
to b.
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We then use this normalizing relation to define normalization of IHL proofs,
given by the relation �IHL over LTT (IHL) proof-terms. This relation is given by
a single reduction rule

a�̂Inta
′ entails cons(d, a) �IHL cons(d, a′) (5.53)

We take �̂IHL to be the transitive closure of this rule. Observe that,

d�̂IHLd
′

if, and only if, d′ is obtained from d by replacing occurrences of intuitionis-
tic proof-terms in cons(t, b) terms by equivalent normalized forms by repeated
application of the rules for �Int.

We have the following result.

Lemma 5.2.1. Take any LTT (IHL) proof-terms al
A and bm
B.
If al
A �IHL bm
B, then the type of a is the same as the type of b. That is to

say, the program/formula pair l �A is the same as m �B.

Proof. Using Lemma 2.3.1 of Chapter 2 for LTT (Int), which entails that, if an
intuitionistic proof-term c ∈ PT (Int) reduces to c′ ∈ PT (Int) by one of the rules
of Fig. 5.4, then the type of c is the same as the type of c′.

Consequently, any application of the rule (5.53)

c �Int c′ entails cons(d, c) �IHL cons(d, c′)

will mean that cons(d, c) and cons(d, c′) will have the same type. The lemma
follows immediately from this fact. ��

1. app(abstract x. a(A⇒B), bA) �Int a[b/x]B

2. specific(use x : s. a∀x:s•A, v : s) �Int a[v/i]A[v/x]

3. fst(〈a, b〉(A∧B)) �Int aA

4. snd(〈a, b〉(A∧B)) �Int bB

5. case inl(a)(A∨B) of inl(xA).bC , inr(yB).cC �Int b[a/x]C

6. case inr(a)(A∨B) of inl(xA).bC , inr(yB).cC �Int c[a/y]C

7. select (show(v, a)∃y:s•P ) in xP .y.bC �Int b[a/x][v/y]C

Fig. 5.4. The reduction rules that inductively define �Int.
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5.2.8 Strong Normalization and the Church–Rosser property

The strong normalization property tells us that the normalization process will
always terminate. To show that this property holds over our calculus, we need
to show that the proof-terms of LTT(IHL) are strongly normalizable, according
to the following definition.

Definition 5.2.6 (Strongly normalizable proof-terms — Definition
2.3.4 of Chapter 3). We say that a proof-term is normal if it contains no
redex — that is, if it is irreducible.

Given a proof-term t, we let N(t) denote the least upper bound of lengths of
reduction sequences for t. We say that t is strongly normalizable if all reduction
sequences are finite.

By Theorem 2.3.5 of Chapter 3, p. 41, proof-terms of PT (Int) are strongly
normalizing with respect to the relation Int. We use exactly the same set of
proof-terms, but extended with a larger set of witnesses within show(v, a) terms.
However, because witness terms do not affect application of �Int, it follows that
our proof-terms are strongly normalizing with respect to �Int.

Strong normalization of LTT (IHL) follows easily from the fact that Int proofs
are strongly normalizing.

Theorem 5.2.7 (Strong normalization for IHL proofs). Each proof-term
of PT (IHL) is strongly normalizing.

Proof. Any IHL proof has a finite number of applications of the (cons) rule.
Consequently, for any PT (IHL) term, there are only a finite number of subterms
of the form cons(d, a).

Any reduction using �IHL can only involve application of the rule (5.53).
That is to say, a reduction according to the rule for �IHL can occur if, and
only if, a reduction according to the rules for �Int can occur over a subterm of
the form cons(d, a). Because proof-terms of LTT (Int) are strongly normalizing,
there are only a finite number of times the intuitionistic proof-term a can be
reduced in cons(d, a) subterms.

By these two facts, the theorem holds. ��
The Church–Rosser property says that divergent proof normalization se-

quences always eventually converge to yield the same proof.
As in the previous part of this book, we formalize this notion using the

Curry–Howard correspondence, proving the Church–Rosser property in terms
of the relation � over a proof’s corresponding proof-term. We say that proofs
in IHL satisfy the Church–Rosser property when the normalizing relation �

satisfies the diamond property.

Definition 5.2.8 (Diamond property). A relation # over a set S satisfies
the diamond property when for every x, x1 and x2 in S

(x#x1 and x#x2 entails there is a x3 such that (x1#x3 and x2#x3))
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As a consequence of the Church–Rosser property for Int (Theorem 2.3.7,
Chapter 2, p. 42) we know that PT (Int) proof-terms satisfy the Church–Rosser
property. From this, we have the Church–Rosser property for PT (IHL).

Theorem 5.2.9 (Church–Rosser property for IHL proofs). The relation
�IHL over PT (IHL) satisfies the diamond property. Consequently, PT (IHL) sat-
isfies the Church–Rosser property.

Proof. A consequence of the Church–Rosser property for PT (Int) and the def-
inition of �IHL. ��

5.3 Example: Electronic Banking System

Recall the electronic banking system example of Chapter 4, Section 4.5.5. The
system consists of a database of account details, indexed by user identification.
We used IHL to develop a program and a description of the program. The
program searches through the database, making it possible to obtain a list of
all accounts held at the bank by the user, given a user’s details. This described
by the program/formula pair in the theorem

� counter := 0;
while !counter < (length db)− 1 do counter :=!counter + 1 �
∃y : (account list) • allAccountsAt(currentUser, y, counterf ) ∧

(counterf < (length db)− 1) = false (5.54)

5.3.1 Axioms

The domain was axiomatized as follows. We take a predicate

allAccountsAt(u : user, x : account list, y : int)

whose meaning is that x is a list of all accounts found to be owned by the user u,
up to the point y in the database db. The predicate is defined by the following
four axioms in AX, denoted by A5.55, A5.56, A5.57 and A5.58 respectively (see
Chapter 4, Section 4.5.5 for the explanations of the axioms).

∀u : user • ∀x : (account list) • ∀y : int • allAccountsAt(u, x, y)⇒
∀z : int • z ≤ y ⇒ sub(db, z).owner = u (5.55)

∀u : user • ∀x : (account list) • ∀y : int•
sub(db, y + 1).owner = u ∧

allAccountsAt(u, x, y)⇒ allAccountsAt(u, sub(db, y + 1) :: x, y + 1) (5.56)
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∀u : user • ∀x : (account list) • ∀y : int•
¬sub(l, y + 1).owner = u ∧

allAccountsAt(u, x, y)⇒ allAccountsAt(u, x, y + 1) (5.57)

∀u : user • ∀y : int • y = 0⇒ allAccountsAt(u, [], y) (5.58)

(These axioms are available for introduction in the intuitionistic subsystem of
IHL, so they do not involve programs.)

The previous axioms are Harrop. We also have a non-Harrop axiom, denoted
by A5.59:

y < (length db)− 1⇒ sub(l, y + 1).owner = u ∨
¬sub(l, y + 1).owner = u (5.59)

Applications of these axioms are used in the LTT by writing Axiom(A),
where A is the axiom. For instance, use of (5.55) is denoted by Axiom(A5.55).

5.3.2 Constructing the proof-term

We follow the original proof, building the corresponding proof-term. From
(5.56), (5.57) and (5.59), we can derive an intuitionistic proof-term of the form

ey<(length db)−1, fallAccountsAt(u,x,y) �Int p
∃l:(account list)•allAccountsAt(u,l,y+1)
5.60

(5.60)
where p5.60 is a proof-term denoting proof by cases

case app(A(5.59), e) of inl(gsub(l,y+1).owner=u).show(sub(db, y + 1) :: x, p2),

inr(h¬sub(l,y+1).owner=u).show(x, p3)

p2 uses (5.56) and the assumption sub(l, y + 1).owner = u to derive

app(app(app(app(A(5.56), u), x), y), 〈g, f〉)allAccountsAt(u,sub(db,y+1)::x,y+1)

and p3 uses (5.57) and the assumption ¬sub(l, y + 1).owner = u to derive

app(app(app(app(A(5.56), u), x), y), 〈g, f〉)allAccountsAt(u,x,y+1)

By assuming ∃l : (account list) • allAccountsAt(u, l, y), we can apply (∃-E)
on (5.60) and then obtain

�Int ∀y : int • ∀u : user•
(y < (length db)− 1) ∧ ∃l : (account list) • allAccountsAt(u, l, y)⇒

∃l : (account list) • allAccountsAt(u, l, y + 1) (5.61)
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by (⇒-I) over our assumptions, and successive (∀-I) over the free variables. The
corresponding proof-term p5.61 is of the form

use y : int. use u : user. abstract m(y<(length db)−1)∧∃l:(account list).

app(app(abstract ey<(length db)−1. abstract i∃l:(account list)•allAccountsAt(u,l,y).

specific(i, x.fallAccountsAt(u,x,y).p5.60), fst(m)), snd(m))

Using (subst) and taking a variable v such that v = y +1, we can transform
(5.61) into

�Int ∀y : int • ∀v : int • v = y + 1⇒ ∀u : user•
(y < (length db)− 1) ∧ ∃l : (account list) • allAccountsAt(u, l, y)⇒

∃l : (account list) • allAccountsAt(u, l, v) (5.62)

with proof-term p5.62 of the form

use y : int. use v : int. abstract rv=y+1.

Schema(subst, [[(specific(p5.61, y)); rv=y+1];
[∀u : user • (y < (length db)− 1)∧∃l : (account list) • allAccountsAt(u, l, y)⇒

∃l : (account list) • allAccountsAt(u, l, m)][y + 1; v]; [int]])

We then instantiate (5.62) with counteri and counterf and currentUser for
y, v and u, respectively, to give

�Int counterf = counteri + 1⇒ (counteri < (length db)− 1) ∧
∃l : (account list) • allAccountsAt(currentUser, l, counteri)⇒
∃l : (account list) • allAccountsAt(currentUser, l, counterf ) (5.63)

The proof-term corresponding to this proof, which we will denote by p5.63, is of
the form

specific(specific(specific(p5.62, counteri), counterf ), currentUser)

We also have the following, by the (assign) rule of Hoare logic:

� counter :=!counter + 1 � counterf = counteri + 1 (5.64)

This has a corresponding proof-term assign(counter, counter + 1).
And so, by applying (cons) to (5.64) and (5.63)

� counter :=!counter + 1 � (counteri < (length db)− 1) ∧
∃l : (account list) • allAccountsAt(currentUser, l, counteri)⇒
∃l : (account list) • allAccountsAt(currentUser, l, counterf ) (5.65)
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The corresponding proof-term is

cons(assign(counter, counter + 1), p5.63)

Then we apply (loop) on (5.65)

� while !counter < (length db)− 1 do counter :=!counter + 1 �
∃l : (account list) • allAccountsAt(currentUser, l, counteri)⇒
∃l : (account list) • allAccountsAt(currentUser, l, counterf ) ∧

(counterf < (length db)− 1) = false (5.66)

with resulting proof-term

wd(cons(assign(counter, counter + 1), p5.63))

From the axiom (5.58) we can derive

�Int counterf = 0⇒
∃y : (account list) • allAccountsAt(currentUser, y, counterf ) (5.67)

with a proof-term p5.67. By application of (assign) we have

� counter := 0 � counterf = 0 (5.68)

with proof-term assign(counter, 0). Then, applying (cons) to (5.68) and (5.67)
gives

counter := 0 � ∃y : (account list) • allAccountsAt(currentUser, y, counterf )
(5.69)

with proof-term cons(assign(counter, 0), p5.67). This can be weakened to include
a true hypothesis true:

counter := 0 � true⇒
∃y : (account list) • allAccountsAt(currentUser, y, counterf ) (5.70)

with a proof-term of the form

cons(cons(assign(counter, 0), p5.67), ptrue)

where ptrue is a proof-term for an intuitionistic proof of P ⇒ (true⇒ P ) where
P is ∃y : (account list) • allAccountsAt(currentUser, y, counterf ).

So, using (seq) on (5.70) and (5.66), we can obtain

� counter := 0;
while y < (length db)− 1 do counter :=!counter + 1 �

true⇒ ∃y : (account list) • allAccountsAt(currentUser, y, counterf ) ∧
(counterf < (length db)− 1) = false (5.71)
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with proof-term

seq(cons(cons(assign(counter, 0),
p5.67), ptrue),wd(cons(assign(counter, counter + 1), p5.63)))

which can be simplified to the required form of (5.54)

� counter :=!counter + 1;
while y < (length db)− 1 do counter :=!counter + 1 �

∃y : (account list) • allAccountsAt(currentUser, y, counterf ) ∧
(counterf < (length db)− 1) = false

with proof-term p5.72

cons(seq(cons(cons(assign(counter, 0),
p5.67), ptrue),wd(cons(assign(counter, counter + 1), p5.63))), qtrue) (5.72)

where qtrue is a proof of (true⇒ A)⇒ A with A standing for

∃y : (account list) • allAccountsAt(currentUser, y, counterf ) ∧
(counterf < (length db)− 1) = false

Remark 5.1. We have shown how to encode (5.54) in our logical type theory. In
the next chapter, we will define a notion of return value realizability of IHL and
provide a method of program extraction, returning to our example in Section
6.4. There, we shall see how to transform our proof-term into a program that,
given a user’s details, will search through a database to obtain all accounts held
at the bank by the user, and then returns this list.

5.3.3 Normalization

The proof can by normalized by application of the reduction rule (5.53), (and
so using the intuitionistic proof-term reduction rules of Fig. 5.4). These rules
only reduce the subterms corresponding to intuitionistic subproofs used within
our IHL proof. The only applicable subterm of p5.72 is p5.63. The proof-term was
of the form

specific(specific(specific(p5.62, counteri), counterf ), currentUser)

Normalization involves repeated applications of rule 2 of Fig. 5.4, reducing pairs
of specific and use proof-term constructors.

This results in a proof-term p′
5.63 of the form



5.3 Example: Electronic Banking System 163

specific(abstract rcounterf =counteri+1.

Schema(subst, [[p′
5.61; r

counterf =counteri+1];
[∀u : user • (counteri < (length db)− 1) ∧

∃l : (account list) • allAccountsAt(u, l, counteri)⇒
∃l : (account list) • allAccountsAt(u, l, m)][counteri + 1; counterf ]; [int]]),

currentUser)

where the normalized form of specific(specific(p5.61, counteri), counterf ) is p′
5.61:

use u : user. abstract m(counteri<(length db)−1)∧∃l:(account list).

app(app(abstract ecounteri<(length db)−1.

abstract i∃l:(account list)•allAccountsAt(u,l,counteri).

specific(i, x.fallAccountsAt(u,x,counteri).p′
5.60), fst(m)), snd(m))

We define p′
5.60 by

case app(A(5.59), e) of

inl(gsub(l,counteri+1).owner=u).show(sub(db, counteri + 1) :: x, p′
2),

inr(h¬sub(l,counteri+1).owner=u).show(x, p′
3)

where p′
2 is

app(app(app(app(A(5.56), u), x), counteri), 〈g, f〉)

with type allAccountsAt(u, sub(db, counteri + 1) :: x, counteri + 1) and p′
3 is

app(app(app(app(A(5.56), u), x), counteri), 〈g, f〉)allAccountsAt(u,x,counteri+1)

Because this is the only reducible subterm of p5.72, the normalized proof
p′
5.72 is given by taking p5.72 and substituting p′

5.63 for p5.63, to give

cons(seq(cons(cons(assign(counter, 0),
p5.67), ptrue),wd(cons(assign(counter, counter + 1), p′

5.63))), qtrue)

Remark 5.2. The outermost specific application argument currentUser of p′
5.63

cannot be matched with the abstraction use u : user variable of p′
5.61, because

the proof-term constructor for the (subst) schema separates the former from the
latter. In certain cases it is possible to add additional reduction rules to move
schemata up and down a proof, to facilitate matchings for further reductions.
These rules would be similar to those defined by the authors for their structured
specification logic — see [CPW00, PCW02] and also Chapter 8 in Part IV of
this book. However, for the purposes of our work, we will be satisfied with the
current reduction rules.
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Remark 5.3. When extracting a program from our example proof in the next
chapter, we will show that this sub-proof can be transformed into a SML pro-
gram that helps to build a list of accounts for a user. We will see that the
extracted program’s structure reflects parts of the structure of the proof-term.
Consequently, normalization of proof-terms aids the extraction of simpler pro-
grams.

5.4 Discussion

This chapter presented some important semantic and proof-theoretic properties
of IHL. First we examined soundness and completeness issues for IHL. Then
we defined logical type theory for IHL, providing a property analogous to the
Curry–Howard correspondence for intuitionistic logic.

The logical type theory is of particular importance for the results of this
part of the monograph, as it is necessary for us to apply the Curry–Howard
protocol to IHL.

Our proof-terms form an augmented lambda calculus. Our domain of rea-
soning is imperative programs. Observe that, in contrast to näıve functional
proof-as-programs, proof-term normalization does not correspond to impera-
tive program execution. We claim that it is not possible to provide a näıve
proofs-as-programs correspondence for Hoare logic, because proof normaliza-
tion and imperative operational semantics are too different to be identified.
However, in the next chapter, we will show how to transform our proof-terms
into provably correct imperative programs with side-effects and side-effect-free
return values. In this way, following the analogy to state-of-the-art functional
proofs-as-programs, program evaluation and proof-normalization are clearly dis-
tinguished from one another.
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Proofs-as-Imperative-Programs

In this chapter we show how to synthesize correct imperative programs from
proofs in IHL according to the Curry–Howard protocol of Chapter 3. We take a
novel approach to specifying imperative program behavior, using the formulae
of IHL to specify, not only pre- and post- conditions of imperative programs, but
also the required return values. A required return value is taken as a Skolem
function for the formula (using the definition of Skolemization for first-order
many-sorted formulae given in Chapter 2 of Part II).

Hoare logic is good for reasoning about and developing side-effect produc-
ing imperative programs. However, Hoare logic on its own is arguably not as
well suited as constructive methods for developing side-effect-free aspects of
imperative programs, such as return values.

Return values can be complex — and difficult to reason about. Most imper-
ative languages permit the definition of higher-order functions as return values.
This can be achieved in C++, for instance, using the Standard Template Li-
brary (STL), or in Eiffel using the Agents library. In an impure functional
language such as SML, complex return values take the form of side-effect-free
lambda expressions. In general, such expressions are difficult to code from a
given specification, due to their functional nature and the fact that they may
use state values that have been manipulated by code preceding the return value.

Hoare logic usually specifies properties of return values, or a view of states,
by associating these values with designated state symbols. The construction of
a return value consists of designing an assignment statement for a designated
state reference, and proving a required property holds about the resulting final
value of the state. For instance, imagine we want to derive a program whose
return value is an even number. In Hoare logic, if we let r be the state symbol
associated with a return value !s ∗ 2, we can prove

s := 3; r :=!s ∗ 2 � Even(r) (6.1)

The program on the left hand side of the tuple s := 3; r :=!s ∗ 2 is not the
required program — it is represents the required program with the state refer-
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ence r representing the required return value. The program needs to be trans-
formed into a program where the required return value replaces the assignment
r := s ∗ 2:

s := 10; !s ∗ 2 (6.2)

might be synthesized. Thus, the second assignment r :=!s ∗ 2 of (6.1) is short-
hand for the fact that !s ∗ 2 should be returned by the required program (6.2),
and the assertion is shorthand for specifying that the return value is even.

The problem with this traditional approach is that return values are not
synthesized — they are hand-written. The designer is required to explicitly
define a return value before proving properties about it. For instance, in a
proof of (6.1), the required return value !s ∗ 2 must be identified and assigned
to r so that we can prove that Even(r) holds for the program.

Such an explicit definition is an implementation detail — it involves writ-
ing the code for a return value. We would prefer to be able to specify, prove
properties about, and synthesize required return values, while hiding such im-
plementation details.

Constructive methods enable us to achieve this. In constructive program
synthesis, a proof of a statement can be used to synthesize a realizer of the
statement. The realizer is a functional program that satisfies the statement as
a specification. For example, an existential statement

∃x : t •A(x)

can be used to synthesize a function that returns a value p such that A(p) is
provable. Because the realizer is synthesized from a proof, the details about its
definition are hidden from the prover. The prover need only be concerned with
using logic to reason about a problem, not with the definition of a program.

In this chapter, we will adapt this property of constructive functional syn-
thesis to the imperative context.

Example 6.1. Given a constructive proof in IHL of

s := s ∗ 3 � sf > si ∧ (∃x : int • Even(x) ∧ x > si)

our techniques will synthesize a program of the form

s := s ∗ 3; f

where the function f is a side-effect-free function (such as !s ∗ 2) that realizes
the existential statement of the post-condition (∃x : int • Even(x) ∧ x > si),
acting as a witness for the x.
Example 6.2. Given the proof of the Example 4.5.5 of Chapter 4 (p. 123)
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� p � PINCorrect(pini)⇒ canWithdrawf = true
� q � canWithdrawi = true⇒

(isConnectedf = true ∧ ∃x : string •AppMessage(x))

� p; q � PINCorrect(pini)⇒
(isConnectedf = true ∧ ∃x : string •AppMessage(x))

(seq)

our adaptation will enable us to synthesize a program m that makes

p; q � PINCorrect(pini)⇒ (isConnectedf = true∧
∃x : string •AppMessage(x))

true (just as p; q does), but also returns an appropriate message, given that
the user has entered their PIN correctly. That is to say, we will synthesize a
program m that, when executed, will return a string r such that

AppMessage(r)

is true, given that the user has entered their PIN correctly.
By virtue of the synthesis process the user should have no need to manually

code the return value, but instead works within IHL to prove a theorem, from
which the return value is then synthesized.

We proceed in the following way, ensuring that our approach adheres to
the Curry–Howard protocol, where IML and LTT (IHL) are considered as the
computational type theory and the logical type theory respectively. We define a
notion of realizability between IML programs and formulae of IHL. Essentially,
a program is a realizer of a formula when the formula correctly describes the
side-effects of the program and the the possible return values of the program.
After this, we define an extraction map from proof-terms of LTT (IHL) (given in
the previous chapter) to IML programs. The map is used to transform a proof
of a program/formula pair p�F into a program m with return value that realizes
the formula F . The program m will be similar to p in that it makes F true, but
more complicated in that it will involve a return value realizer for F .

This chapter is organized as follows.
• Our notion of realizability is explained in section 6.1 and program extraction

is explained in section 6.2.
• We explain how these results lead to a successful application of the Curry–

Howard protocol in section 6.3.
• In Section 6.4, we illustrate our program synthesis methods for the electronic

banking example used throughout this part of the monograph.
• Section 6.5 provides a second example application of our methods. We show

how the synthesis of programs with return values can correspond to the
synthesis of programs with complex contracts, to be used in systems built
according to Bertrand Meyer’s principle of design-by-contract [Mey97].

• A chapter summary and concluding discussion are provided in section 6.6.



168 6 Proofs-as-Imperative-Programs

6.1 Realizability

This section discusses a new notion of realizability between IML programs and
the formulae of IHL. Intuitively, an imperative program p is a realizer of a
program/formula pair l � F when:

• The side-effects of p are correctly described by F . That is to say, F is true
of p in the sense defined in Chapter 4.

• The side-effects of l involving state references used in F are the same as
those of p involving those references.

• The return value of p is correctly described by F . That is to say, for every
execution, the return value of p is a modified realizer of F , as defined for
intuitionistic logic in Section 2.5 of Chapter 2, Part II, p. 2.5.

The first two requirements use definitions given in Chapter 4. The third re-
quirement requires further elucidation.

We define how return values may be specified by formulae by adapting
intuitionistic modified realizability. A formula of IHL can be true about the
return value of a program, when the return value is a modified realizer for the
formula. This is done by adapting the intuitionistic definition to our context.
To make this adaptation, we require a notion of Skolem form for formulae of
IHL, WFF (Σt).

6.1.1 Skolemization

Our notion of Skolemization follows the intuitionistic case of Chapter 2, and so
involves Harrop formulae.

Harrop formulae are defined as in Definition 2.2.1 of Chapter 2, Part II. We
repeat the definition of completeness here.

Definition 6.1.1 (Harrop). A formula F of WFF (Σt) is a Harrop formula
if it is

1. an atomic formula,
2. of the form (A ∧B) where A and B are Harrop formulae,
3. of the form (A⇒ B) where B (but not necessarily A) is a Harrop formula,

or
4. of the form (∀x : s •A) where A is a Harrop formula.

We write H(F ) if F is a Harrop formula, and ¬H(F ) if F is not a Harrop
formula.

We also need to define a sort extraction map etype from formulae to sorts
of Σt (and so of Σp). This is given in Fig. 6.1.

We can now define the Skolem form of a WFF (Σt) formula, in the same
way as we did for formulae of Chapter 2.
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F etype(F )

any Harrop formula Unit

(A ∧ B)

⎧⎨
⎩

etype(A) if not H(B)
etype(B) if not H(A)
etype(A) ∗ etype(B) otherwise

(A ∨ B) etype(A)|etype(B)

(A ⇒ B)
{

etype(B) if not H(A)
etype(A) → etype(B) otherwise

(∀x : s • A) s → etype(A)

(∃x : s • A)
{

s if H(A)
s ∗ etype(A) otherwise

⊥ Unit

P is an atomic predicate.

Fig. 6.1. Definition of etype.

Definition 6.1.2 (Skolem form and Skolem functions). Given a closed
formula A, we define the Skolem form of A to be the Harrop formula Sk(A) =
Sk′(A, ∅), where Sk′(A, AV ) is defined as follows.

A unique function letter fA, called the Skolem function, is associated with
each such formula A, of sort etype(A). AV represents a list of application
variables for A (that is, the variables that will be arguments of fA). If AV
is {x1 : s1, . . . , xn : sn} then f(AV ) stands for the function application
app(f, (x1, . . . , xn)).

1. If A is Harrop, then Sk′(A, AV ) = A.
2. If A = (B ∨ C), then

Sk′(A, AV ) =
(∀x : etype(B) • fA(AV ) = Inl (x)⇒ Sk′(B, AV )[x/fB ]) ∧

(∀y : etype(C) • fA(AV ) = Inr (y)⇒ Sk′(C, AV )[y/fC ])

3. If A = (B ∧ C), then
a) If B is Harrop and C is not Harrop,

Sk′(A, AV ) = B ∧ Sk′(C, AV )[snd (fA)/fC ]

b) If B is not Harrop and C is Harrop,

Sk′(A, AV ) = (Sk′(B, AV )[fst (fA)/fB ] ∧ C)
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c) If B and C are not Harrop,

Sk′(A, AV ) = (Sk′(B, AV )[fst (fA)/fB ] ∧
Sk′(C, AV )[snd (fA)/fC ])

4. If A = (B ⇒ C), then
a) If B is Harrop,

Sk′(A, AV ) = (B ⇒ Sk′(C, AV )[fA/fC ])

b) If B is not Harrop and C is not Harrop,

Sk′(A, AV ) = ∀x : etype(B) • (Sk′(B, AV )[x/fB ]⇒
Sk′(C, AV )[(fAx)/fC ])

5. If A = ∃y : s • P , then
a) when P is Harrop, Sk′(A, AV ) = Sk′(P, AV )[fA(AV )/y].
b) when P is not Harrop,

Sk′(A, AV ) = Sk′(P, AV )[fst (fA(AV ))/y][snd (fA(AV ))/fP ]

6. If A = ∀x : s • P , then Sk′(A, AV ) = ∀x : s • Sk′(P, AV )[(fAx)/fP ].

For intuitionistic proofs, we retain the same notion of modified realizability
used in Chapter 2.

Definition 6.1.3 (Modified realizability). A program p is a modified realizer
of a formula F if, and only if, �Int Sk(F )[p/fF ] is provable. In this case, we write
p mr F .

6.1.2 Adapting modified realizability for specifying return values

We say that a formula specifies a program’s possible return values if, for every
execution of the program, the return value can be used as a Skolem function
in the Skolemized version of the formula, which is made true by the program’s
execution. In this case, we say that the return value is a modified realizer for
the program’s side-effects or a return value realizer.

Definition 6.1.4 (Return value realizability). Let p be an IML program.
We say that the program is a is a return value realizer of F for the initial state
σ and interpretation ι when, for any σ′ ∈ MLStates, if

〈p, σ〉 �̂ 〈answer, σ′〉

then
(σ, σ′) �ι Sk(F )[answer/fF ]
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In this case, we write p retrσι F .
If p retrσι F for some σ, we say that the program is a is a return value realizer

of F under ι and write p retrι F .
If p retrι F for some ι, we say that the program is a is a return value realizer

of F and write p retr F .

Our definition of return value realizability is analogous to realizability for
intuitionistic logic, where a modified realizer is a term that provides the con-
structive content of a formula, making the Skolemized version of the formula
true when substituted for the Skolem function. However, our definition is fur-
ther complicated because of to the presence of state identifiers in the formula
that require realizability to be given with respect to a program’s side-effects.

6.1.3 Specifying side-effects and return values

Using the definition of return value realizability and the definition of truth about
program side-effects, we can now define how program/formula pairs specify
programs and required return values of programs.

We use the following definition.

Definition 6.1.5 (Visible side-effect equivalence). Take two programs, p
and q of IML and take any formula A.

We say that p and q are side-effect equivalent over the states visible from
A, and write

p ≡A q

when
(σ, σ′) ∈ [[p]] entails (σ, σ′′) ∈ [[q]]

provided σ′ and σ′′ differ only over state references that are not used in A. That
is to say, σ′ and σ′′ differ only over references not in state−id(s̄i :: r̄f ), where
s̄i and r̄f are the initial and final state identifiers that occur in A.

The notion of a program/formula pair being true of both program’s side-
effects and return values, informally stated at the beginning of this section, is
called IHL-realizability, and is defined formally as follows.

Definition 6.1.6 (IHL-realizability). Let p be an IML program, and let w�P
be a program/formula pair of IHL.

We say p is a IHL-realizer of w � P if, and only if,

1. [[p]] � P , and
2. p retr P
3. p ≡P w

When these hold, we write p kr w � P .

In the next section, we will show how to extract correct programs as IHL-
realizers of specifications from proofs in Hoare logic.
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6.2 Extraction

In this section we prove the main result of this part of the book: that there is
an extraction map, extractIHL, from proof-terms of LTT (IHL) to IML programs
that generates IHL-realizers from proofs of specifications. Due to the presence
of intuitionistic proofs in Hoare logic (proofs via the (cons) rule), our map also
involves an extraction map over intuitionistic proof-terms, of the form given in
Chapter 2.

We first need to make some assumptions about the treatment of black-box
programs, axioms, and schemata in extraction. Then we will revisit intuitionistic
extract, provide our full extraction map, and finally derive our main result.

6.2.1 Assumptions about black-box programs and Σp

Our results assume that we can obtain IHL-realizers from axioms and applica-
tions of schemata.
Assumption 6.1 (IHL-realizers for axioms and schemata). We assume that, for
each proof-term corresponding to an axiom,

IHLAxiom(w �A)w
A

there is a program PKw
A : etype(A) such that

PKw
A kr w �A

Similarly, we assume that, for each proof-term corresponding to a rule gen-
erated from a black-box schema,

IHLSchema(N [ē])w
A

there is a program PKN [ē] : etype(A) such that

PKN [ē] kr w �A

We also assume that all non-Harrop axioms used in intuitionistic proofs have
associated modified realizers.
Assumption 6.2. We assume that, for each proof-term corresponding to an
axiom:

Axiom(A)A

there is a function in Σp and a corresponding program in the SML preamble

PKA : etype(A)

such that
PKA mr A
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Similarly, we assume that, for each proof-term corresponding to a rule gen-
erated from a schema,

Schema(N, [ē; F̄ ; t̄; S̄])A

there is a function in Σ and a corresponding program in the SML preamble

�Int PKN [ē;F̄ ;t̄;S̄] : etype(A)

such that
PKN [ē;F̄ ;t̄;S̄] kr A

This assumption is similar to the one made in the presentation of functional
proofs-as-programs in Chapter 2 (see Assumption 2.3, p. 68).
Example 6.3. Following Chapter 2, we take the modified realizer for instances
of the substitution schema (subst)

q
P [β/y]
1 qα=sβ

2

Schema(subst, [[q1; q2];P ; ȳ; Z̄])P [α/y]
(subst)[[P ]; [α; β]; [s]]

to be
PKsubst,[[q1;q2];P ;ȳ;Z̄] = extractInt(q1[α/y])

It is easy to see that this is the required realizer, using the same reasons given
in Example 2.6, p. 69.

6.2.2 Extraction over intuitionistic proofs

Because of the (cons) rule, where intuitionistic proofs of Int(IHL) are used in IHL
proofs, LTT (IHL) proof-terms involve proof-terms taken from the intuitionistic
subsystem of LTT (IHL), and our definition of extractIHL must be built on an
extraction map over intuitionistic proof-terms, of the form given in Chapter 2.
For reference, we provide this map again in Fig. 6.2.

The map in Fig. 6.2 extracts Terms(Σt) terms from PT (Int(IHL)) proofs.
Note that we can treat the resulting terms of Terms(Σt) as pure IML program
terms with state identifiers taken to be free variables. The extracted terms are
intuitionistic modified realizers in the sense defined in Section 2.5 of Chapter 2,
Part II, p. 44. The map presumes a set of variables in V ar, each corresponding
to a proof-term variable from V arPT (IHL), {xu | u ∈ V arPT (Int)}.
Theorem 6.2.1. Take any proof

�Int T

Then extractInt(t) is an intuitionistic modified realizer of T ,

extractInt(t) mr T

That is to say,
�Int Sk(T )[extractInt(t)/fT ]
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Proof. The proof follows from the proof of Theorem 2.5 of Chapter 2, Part
II, p. 44. The extraction map extractInt(p) is the same. The only difference
is that state identifiers are used in the terms, Terms(Σt), of our version of
Int. However, the presence of state identifiers does not affect the proof as
these are treated as special constant symbols in Σt, and so the proof can be
retained. ��

6.2.3 Imperative program extraction

Using the intuitionistic extraction map of Fig. 6.2, we can define extractIHL over
all the proof-terms of LTT (IHL), as in Fig. 6.3.
Remark 6.1. The extraction map for producing IML programs (Fig. 6.3) treats
terms extractInt(t) ∈ Terms(Σt) as IML programs. This is possible when we
treat state identifiers as free variables in an IML term.

So, for instance, the term

si + vf + 10

from Terms(Σt) can be treated as an IML program with free variables si and
vf

si + vf + 10

The required results are provided in Theorems 6.2.4 and 6.2.5.

6.2.4 Preliminary results

To prove our results, we require the following lemmata.

Theorem 6.2.2. Take any proof

�LTT (IHL) dw
A

Then
�IML extract(d) : etype(A)

is a correct type inference.

Proof. By induction on the possible forms of d.
In the case where d represents the application of an axiom or schema, we

have the theorem from the assumptions in Section 6.2.1, p. 172.
The other cases follow easily using the type inference rules of Fig. 4.5, Chap-

ter 4, p. 105. ��
Lemma 6.2.1. Take an arbitrary interpretation ι and states σ and σ′. If there
is a term a such that (σ, σ′) �ι Sk(A)[a/fA] then (σ, σ′) �ι A.

Proof. By induction on the form of A. ��
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pP extractInt(pP )
any proof-term
where H(P ) ()

uA xu not H(A)
() H(A)

Axiom(N)A PKN

Schema(N, [ē; F̄ ; t̄; S̄])A PKN [ē;F̄ ;t̄;S̄]

abstract uA. aB fn xu => extractInt(a) not H(A)
extractInt(a) H(A)

app(cA⇒B , aA)
extractInt(c) H(A)
(extractInt(c) extractInt(a)) not H(A)

use x : s. aA fn x : s => extractInt(a)
specific(a∀x:s•A, v) (extractInt(a) v)

〈aA, bB〉 (extractInt(a), extractInt(b))
case aA∨B of inl(tA).bC ,

inr(uB).cC match extractInt(a) with
Inl(xt) => extractInt(b),
Inr(xu) => extractInt(c)

show(v, aA)
v H(A)
(v, extractInt(a)) not H(A)

select (a∃y•A) in x.uA[x/y].bB

(fn x => extractInt(b))
extractInt(a)

}
H(A)

(fn x =>
fn xu => extractInt(b))
fst(extractInt(a))
snd(extractInt(a))

⎫⎪⎪⎬
⎪⎪⎭ not H(A)

#(a) where # is
inl, inr, fst or snd

#(extractInt(a))

abort(a⊥) ()

Fig. 6.2. The extraction map extractInt, defined from intuitionistic proof-terms
LTT (Int) to terms of Terms(Σt).

Lemma 6.2.2. Take an arbitrary interpretation ι. Let A be a formula that does
not contain any initial or final state identifiers. Let σ, σ′, σ′′ be arbitrary states.
Then

(σ, σ′) �ι Sk(A[s̄f/v̄])[p/fA[s̄f /v̄]] entails

(σ′, σ′′) �ι Sk(A[s̄i/v̄])[p/fA[s̄i/v̄]]

Lemma 6.2.3. Let A be an arbitrary formula and σ be a state. Let σ′ and σ′′

be states that differ from σ only over a state reference r. Assume ri and rf do
not occur in Sk(A)[s̄i/v̄][answer x/fA[s̄i/v̄]]. Then

(σ, σ′) �ι′ Sk(A)[s̄i/v̄][answer x/fA[s̄f /v̄]]entails

(σ, σ′′) �ι′ Sk(A)[s̄f/v̄][answer x/fA[s̄f /v̄]]
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tw	T extractIHL(t)
any proof-term
where H(T ) w

IHLAxiom(w � A)w	A PKw	A

IHLSchema(N [ē])w	A PKN [ē]

wd(u)while b do l	T

where T is
A[s̄i/v̄] ⇒
(A[s̄f/v̄] ∧
tologicf(b) = false)

rv1 := fn x : etype(A) => x;
while b do

rv2 := extractIHL(q);
rv1 := (fn x2 :: x1 =>
fn x : etype(A) => x2 (x1 x))
!rv2 !rv1;

!rv1;
ite(q1, q2)if b then l1 else l2	C if b then extractIHL(q1) else extractIHL(q2)

seq(pw1	P , qw2	Q)w1;w2	T

where
T is A[s̄i/v̄] ⇒ C[s̄f/v̄]
P is A[s̄i/v̄] ⇒ B[s̄f/v̄]
Q is B[s̄i/v̄] ⇒ C[s̄f/v̄]

rvp := extractIHL(p);
rvq := extractIHL(q);
(fn xp => fn xq =>
fn x : etype(A) =>
xq (xpx))!rvp !rvq

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

not H(A)
not H(B)
and
not H(C)

rvp := extractIHL(p);
rvq := extractIHL(q);
rvq rvp

⎫⎬
⎭

H(A)
not H(B)
and not H(C)

w;
rvq := extractIHL(q);
!rvq

⎫⎬
⎭

H(A)
H(B)
and
not H(C)

w;
rvq := extractIHL(q);
(fn xq =>
fn x : etype(A) =>
xq x) !rvq

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

not H(A)
and H(B)
and
not H(C)

cons(pw	P , qP⇒A)w	A

ī := s̄;
rvp := extractIHL(p);
f̄ := s̄;
(fn s̄i :: s̄f =>

extractInt(q)!rvp)
!ī :: f̄

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

not H(P )
and
not H(A)

ī := s̄;
w;
f̄ := s̄;
(fn s̄i :: s̄f => extractInt(q))

!ī :: f̄

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

H(P )
and
not H(A)

Where we assume that s̄ is the list of state references corresponding to the initial and
final state identifiers occurring in formula T , and that rv1, rv2, rvp, rvq, and lists ī
and f̄ are state references that do not occur in extract(p) and extract(q), and whose
corresponding state identifiers never occur in any formula used in the proof of p or q.

Fig. 6.3. The extraction map extractIHL : LTT (IHL) → IML.
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Proof. The proof is straightforward, by induction over the possible forms
of A. ��
Lemma 6.2.4. Take any interpretation ι. Take any set of state references

R = {r1, . . . , rn}
Let A be a formula in which the corresponding final and initial state identifiers,

Rif = {ri, rf | r ∈ R}
do not occur. Let σ, σ′ be arbitrary states.

If τ ′ is a state that differs from σ′ only over the state references from R,
then

(σ, σ′) �ι A entails (σ, τ ′) �ι A

Also, if τ is a state that differs from σ only over the state references R, then

(σ, σ′) �ι A entails (τ, σ′) �ι A

Proof. By induction over the form of A, using the definition of � (Chapter 4,
Section 4.4.3, Definition 4.4.8, p. 115).

We only exhibit the base case where A is a predicate over terms. The other
cases follow easily.

Assume A is of the form P (a1, . . . , an). Then

(σ, σ′) �ι A⇔ h(P ) � P (ι(a1)σ′
σ , . . . , ι(an)σ′

σ )

Now, for each aj (i = 1, . . . , n),

ι(aj)σ′
σ = ι′(aj)

where ι′ = ι [initial(aj) �→ σ(state−id(initial(aj)))]
[final(aj) �→ σ′(state−id(final(aj)))]

But, because the elements of Rif do not occur in A, initial(aj) and final(aj)
cannot contain any elements of Rif . Consequently, state−id(initial(aj)) and
state−id(final(aj)) cannot contain any elements of R. This means that

σ(state−id(initial(aj))) = τ(state−id(initial(aj)))

and
σ′(state−id(final(aj))) = τ ′(state−id(final(aj)))

It follows that
ι(aj)σ′

σ = ι(aj)τ ′
σ

and
ι(aj)σ′

τ = ι(aj)σ′
τ

By the definition of �, it is easy to see that
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(σ, σ′) �ι A entails (σ, τ ′) �ι A

and
(σ, σ′) �ι A entails (τ, σ′) �ι A

follow from these facts. ��
Lemma 6.2.5. Let A be a formula and let σ and σ′ be arbitrary states. Let
p : t and q : t be terms of programs of Term(Σp) such that

p �Σp
q

Then, for any interpretation ι,

(σ, σ′) �ι A[p/v] entails (σ, σ′) �ι A[q/v]

Proof. By induction over the form of A, using the definition of � (Chapter 4,
Section 4.4.3, Definition 4.4.8, p. 115).

Similarly, to the previous lemma, we only exhibit the base case, where A is
a predicate over terms. The other cases follow easily.

Assume A is of the from P (a1, . . . , an). Then

(σ, σ′) �ι A[p/v]⇔ (σ, σ′) �ι P (a1[p/v], . . . , an[p/v])
⇔ h(P ) � P (ι(a1[p/v])σ′

σ , . . . , ι(an[p/v])σ′
σ )

⇔ h(P ) � P (ι′(a1)σ′
σ , . . . , ι′(an)σ′

σ )

where ι′ = ι[v �→ ι(p)]. Because p�Σp q, by definition of interpretations (Chapter
4, Section 4.4.3, Definition 4.4.6, p. 114), this means ι′ = ι[v �→ ι(q)]. So, we
know

h(P ) � P (ι′(a1)σ′
σ , . . . , ι′(an)σ′

σ )
⇔ h(P ) � P (ι(a1[q/v])σ′

σ , . . . , ι(an[q/v])σ′
σ )

⇔ (σ, σ′) �ι P (a1[q/v], . . . , an[q/v])
⇔ (σ, σ′) �ι A[q/v]

as required. ��
Lemma 6.2.6. Let A be a formula that does not contain initial state identifers
and let B be a formula that does not contain final state identifiers.

Then, for any states σ, σ′, σ′′

(σ, σ′) � A entails (σ′′, σ′) � A

and
(σ, σ′) � B entails (σ, σ′′) � B

Proof. The proof is straightforward, but tedious, by induction over the possible
forms of A and B. ��
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Lemma 6.2.7. Let p be an element of PML and a an element of Values
(that is, of the closed, irreducible subset of Terms(Σp), Values =
Closed(Normal(Σp))) such that

〈p, σ〉�IML 〈a, σ〉

for some state σ.
Then

(σ, σ) � tologici(p) = a

Proof. The proof is straightforward, using the operational semantics of IML.
��

Corollary 6.2.1. Let p be an element of PML and a an element of Values such
that

〈p, σ〉� 〈a, σ′〉
Then, for any state σ′,

(σ, σ′) � tologici(p) = a

and
(σ′, σ) � tologicf(p) = a

Proof. The proof is straightforward, using interpretation of equality in our mod-
els and the definitions of tologici and tologicf . ��

6.2.5 Extraction yields visible side-effect equivalence

We are now ready to derive one important part of our main result: that a
program m extracted from a proof of w � P is equivalent to w over the state
references used by P . This is the third of the requirements given by Definition
6.1.6 for extracted programs to be IHL-realizers of program/formula pairs. We
will soon derive the other two requirements.

Theorem 6.2.3 (Extraction yields visible side-effect equivalence).
Given a proof

�LTT (IHL) pw
P

we have that
[[extractIHL(p)]] ≡P w

Proof. When P is Harrop, by the definition of extractIHL,

extract(p) = w

and so clearly
[[extractIHL(p)]] ≡P w
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Case: Axioms and schemata. By the assumptions given in Assumption 6.1
(p. 172), if p is of the form

IHLAxiom(w �A)w
A

then
extractIHL(p) ≡A w

as required.
Similarly, by Assumption 6.1 (p. 172), if p is of the form

IHLSchema(N [ē])w
A

then
extractIHL(p) ≡A w

as required.
Case: Proof ends in an application of (loop). Assume p is of the form

wd(q)while b do l
A[s̄i/v̄]⇒(A[s̄f /v̄]∧tologicf(b)=false)

obtained by

qw
(tologici(b)=true∧A[s̄i/v̄]) �LTT (IHL) qw
A[s̄f /v̄]

�LTT (IHL) wd(q)while b do q
A[s̄i/v̄]⇒A[s̄f /v̄]∧tologicf(b)=false
loop

Then

extractIHL(p) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

rv1 := fn x : etype(A) => x;
while b do

rv2 := extractIHL(q);
rv1 := (fn x2 => fn x1 =>
fn x : etype(A) => x2 (x1 x))
!rv2 !rv1;

!rv1;

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
By the IH,

extractIHL(q) ≡(tologici(b)=true∧A[s̄i/v̄])⇒A[s̄f /v̄] l (6.3)

Assume that r̄ are all the state references used in b, so that r̄i are all the
state identifiers used in tologici(b) and r̄f are all the state identifiers used in
tologicf(b).

Observe that the state identifiers used in the formula

(tologici(b) = true ∧A[s̄i/v̄])⇒ A[s̄f/v̄]

are exactly
r̄i :: s̄i :: s̄f

and the state identifiers used in the conclusion
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A[s̄i/v̄]⇒ (A[s̄f/v̄] ∧ tologicf(b) = false)

are
r̄f :: s̄i :: s̄f

Because

state−id(r̄i :: s̄i :: s̄f ) = r̄ :: s̄ = state−id(r̄f :: s̄i :: s̄f )

we can use (6.3) and Definition 6.1.5 to obtain

extractIHL(q) ≡P l (6.4)

By the operational semantics of IML (Fig. 4.6 in Chapter 4, p. 108) it follows
that, because rv1 and rv2 do not occur in extractIHL(q),⎛⎜⎜⎝

rv2 := extractIHL(q);
rv1 := (fn x2 => fn x1 =>
fn x : etype(A) => x2 (x1 x))
!rv2 !rv1;

⎞⎟⎟⎠ ≡P l

Finally, again by the operational semantics of IML, because rv1 does not occur
in extractIHL(q),

extractIHL(p) ≡P while b do l

as required.
Case: Proof ends in an application of (seq).
Assume pw
P is of the form

seq(qw1
(A[s̄i/v̄]⇒B[s̄f /v̄]), rw2
(B[s̄i/v̄]⇒C[s̄f /v̄]))w1;w2
(A[s̄i/v̄]⇒C[s̄f /v̄])

obtained by application of (seq)

� qw1
(A[s̄i/v̄]⇒B[s̄f /v̄]) � rw2
(B[s̄i/v̄]⇒C[s̄f /v̄])

� seq(qw1
(A[s̄i/v̄]⇒B[s̄f /v̄]), rw2
(B[s̄i/v̄]⇒C[s̄f /v̄]))w1;w2
(A[s̄i/v̄]⇒C[s̄f /v̄])

By the IH,
extractIHL(q) ≡A[s̄i/v̄]⇒B[s̄f /v̄] w1 (6.5)

Observe that, because A is free of state identifiers, the state identifiers used in
the formula

(A[s̄i/v̄]⇒ B[s̄f/v̄])

are the same as those used in the conclusion

(A[s̄i/v̄]⇒ C[s̄f/v̄])

and so by (6.3)
extractIHL(q) ≡P w1 (6.6)
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By similar reasoning, we can conclude

extractIHL(r) ≡P w2 (6.7)

There are four cases: 1) A is not Harrop, B is not Harrop, and C is not
Harrop, 2) A is Harrop, B is not Harrop, and C is not Harrop, 3) A is Harrop
and B is Harrop and C is not Harrop, 4) A is Harrop and B is Harrop and
C is not Harrop. (There are only four cases to deal with, because in other
possibilities, the conclusion formula is Harrop and the extracted program is
identical to the program of the program/formula pair and we are done).

Case 1: A is not Harrop, B is not Harrop, and C is not Harrop. Then

extractIHL(p) =

⎛⎜⎜⎜⎜⎝
rvq := extractIHL(q);
rvr := extractIHL(r);
(fn xq => fn xr =>
fn x : etype(A) => xr (xqx))
!rvq !rvr

⎞⎟⎟⎟⎟⎠
Because rvp and rvq do not occur in extractIHL(p) and extractIHL(q), by (6.6)
and (6.7) and the operational semantics, we can conclude that

extractIHL(p) ≡P w1; w2

as required.
Cases 2–4. These cases follow by similar reasoning.
Case: Proof ends in an application of (ite). Assume that pw
P is of the form

ite(p, q)if b then w1 else w2
C

obtained

� qw1
(tologici(b)=true⇒C) � rw2
(tologici(b)=false⇒C)

� ite(q, r)if b then w1 else w2
C
(ite)

By the IH
extractIHL(q) ≡(tologici(b)=true⇒C) w1 (6.8)

and
extractIHL(r) ≡(tologici(b)=false⇒C) w2 (6.9)

Assume that r̄ are all the state references used in b, so that r̄i are all the
state identifiers used in tologici(b).

Assume that s̄i :: t̄f are all the state identifiers used in C.
If r̄ ∩ state−id(s̄i :: t̄f ) = ∅, then by (6.8) and Definition 6.1.5,

(σ, σ′) ∈ [[w1]] entails (σ, σ′′) ∈ [[extractIHL(q)]]

where σ′ and σ′′ only differ over states not in
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r :: state−id(s̄i :: r̄f )

We can weaken this to obtain

(σ, σ′) ∈ [[w1]] entails (σ, σ′′) ∈ [[extractIHL(q)]]

where σ′ and σ′′ only differ over states not in

state−id(s̄i :: r̄f )

And so
extractIHL(q) ≡C w1 (6.10)

Similar reasoning over (6.9) shows

extractIHL(r) ≡C w2 (6.11)

Then, by the operational semantics (Fig. 4.6 in Chapter 4, p. 108) and
Definition 6.1.5, (6.10) and (6.11) yield

if b then extract(q) else extract(r)

as required.
Case: Proof ends in an application of (cons). Assume pw
P is of the form

cons(pw
R, qR⇒A)w
A

derived by
� rw
R �Int qR⇒A

� cons(rw
R, qR⇒A)w
A
(cons)

Assume
(σ, σ′) ∈ [[w]]

If R and A are not Harrop, then

extractIHL(r) =

⎛⎜⎜⎜⎜⎜⎜⎝
ī := s̄;
rvp := extract(p);
f̄ := s̄;
(fn s̄i :: s̄f =>
fn xv : etype(R) => extractInt(q))
!rvp !ī :: f̄

⎞⎟⎟⎟⎟⎟⎟⎠
By the operational semantics for extractIHL(r), if

(σ, σ′′) ∈ [[extractIHL(r)]]

then σ′′ and σ differ only over the references, ī, rvp and f̄. But, because we
always assume that state identifiers corresponding to these references cannot
occur in R or A, we then have
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extractIHL(r) ≡A w

as required.
If P is Harrop and A is not Harrop, then

extractIHL(r) =

⎛⎜⎜⎜⎜⎝
ī := s̄;
w;
f̄ := s̄;
(fn s̄i :: s̄f => extractInt(q))

!ī :: f̄

⎞⎟⎟⎟⎟⎠
By the operational semantics for extractIHL(r), if

(σ, σ′′) ∈ [[extractIHL(r)]]

then σ′′ and σ differ only over the references, ī and f̄. But, because we always
assume that state identifiers corresponding to these references cannot occur in
R or A, we then have

extractIHL(r) ≡A w

as required.
This last case concludes the proof. ��

6.2.6 Extraction results

We are now ready to show that we can extract correct programs with return
values from IHL proofs. Theorems 6.2.4 and 6.2.5, proved below, together with
Theorem 6.2.3 above tell us that any proof

�LTT (IHL) pw
P

can be transformed into an IHL-realizer,

extractIHL(p) kr P

Part of the proof of this theorem was presented in [PC03], but this is the first
full presentation.

Theorem 6.2.4 (Extraction produces programs that satisfy proved
formulae). Given a proof

�LTT (IHL) pw
P

then
[[extractIHL(p)]] � P

Proof. When P is Harrop, by the definition of extractIHL,

extract(p) = w
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and so
[[extractIHL(p)]] � P

follows from soundness (Theorem 5.1.1, Chapter 5, p. 140).
When P is not Harrop, we proceed as follows.
Let s̄i :: r̄f be all the state identifiers used in P .
By Theorem 6.2.3,

extractIHL(p) ≡P w

This means that

(σ, σ′) ∈ [[extractIHL(p)]] entails (σ, σ′′) ∈ [[w]] (6.12)

only when σ′ and σ′′ differ over states not in

state−id(s̄i :: r̄f )

By soundness (Theorem 5.1.1, Chapter 5, p. 140),

[[w]] � P (6.13)

We apply Lemma 6.2.4 to (6.13) and (6.12) to obtain

[[extractIHL(p)]] � P

as required. ��
This theorem proves another requirement of our programs in order to be

IHL-realizers of the theorems they are extracted from.
The next theorem is the last requirement of our main result — it tells us

that extracted programs result in correct return value realizers.

Theorem 6.2.5 (Program extraction produces return value realizers).
Take any proof

�LTT (IHL) tw
T

Let ι be any interpretation.
Then

extractIHL(t) retrι T

Proof. To prove this, we proceed by induction over the form of T .
We use the following induction hypothesis:

Take any proof
�LTT (IHL) tw
T

Take any pair of states (σ, σ′) such that extractIHL(t) terminates
with an execution sequence of the form

〈extractIHL(t), σ〉 �̂ 〈answer, σ′〉 (6.14)

yielding a return value answer. Then

(σ, σ′) �ι Sk(T )[answer/fT ]
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Observe that answer has a representation answer = tologic(answer) in Values.
Case 1: T is Harrop. In this case, by the definition of Skolem form, we are

required to prove that, if

〈w, σ〉 �̂ 〈answer, σ′〉
then

(σ, σ′) �ι T (6.15)

But this is the case by soundness (Theorem 5.1.1).
Case 2: Proof ends in an application of (loop). Assume that tw
T is of the

form
wd(q)while b do l
A[s̄i/v̄]⇒(A[s̄f /v̄]∧tologicf(b)=false)

By the IH, we know that

extractIHL(q) retrι A[s̄i/v̄] ∧ tologici(b) = true⇒ A[s̄f/v̄] (6.16)

This means that, for any τ, τ ′ and pure program value answerτ , if

〈extractIHL(q), τ〉 �̂ 〈answerτ , τ ′〉
we know that, for answerτ = tologic(answerτ ),

(τ, τ ′) � Sk(A[s̄i/v̄] ∧ tologici(b) = true⇒ A[s̄f/v̄])
[answerτ/fA[s̄i/v̄]∧tologici(b)=true⇒A[s̄f /v̄]] (6.17)

There are two cases, depending on whether A is Harrop or not. We only
deal with the latter case, as the approach is similar for the former case.

We wish to show that answer is such that

(σ, σ′) �ι Sk(A[s̄i/v̄]⇒ (A[s̄f/v̄] ∧ tologicf(b) = false))[answer/fP ] (6.18)

As A[s̄i/v̄] is not Harrop, and extractIHL(t) is

rv1 := fn x : etype(A) => x;
while b do

rv2 := extractIHL(q);
rv1 := (fn x2 => fn x1 => fn x : etype(A) => x2(x1x)) !rv2 !rv1;

!rv1

By the definition of Skolem form and the fact that A[s̄i/v̄] and A[s̄f/v̄] are
not Harrop, the required statement (6.18) may be rewritten as

(σ, σ′) �ι ∀x : etype(A[s̄i/v̄]) • Sk(A)[s̄i/v̄][x/fA[s̄i/v̄]]⇒
(Sk(A)[s̄f/v̄][answer x/fA[s̄f /v̄]] ∧ tologicf(b) = false) (6.19)

First we make some observations about the execution of the extracted pro-
gram.
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Beginning of observations.
Because we know that extractIHL(t) terminates, by the definition of �, the

program must have an execution sequence that results in states

σ = σ0, σ1, . . . , σn = σ′

where

〈
⎛
⎜⎜⎜⎜⎜⎜⎝

rv1 := fn x : etype(A) => x;
while b do

rv2 := extractIHL(q);
rv1 := (fn x2 =>
fn x1 => fn x : etype(A) => x2(x1x)) !rv2 !rv1;

!rv1

⎞
⎟⎟⎟⎟⎟⎟⎠

, σ0

〉

�

〈 ⎛
⎜⎜⎜⎜⎝

while b do
rv2 := extractIHL(q);
rv1 := (fn x2 =>
fn x1 => fn x : etype(A) => x2(x1x)) !rv2 !rv1;

!rv1

⎞
⎟⎟⎟⎟⎠ , σ1

〉

�̂ 〈!rv1, σn〉

(6.20)

so answer = σn(rv1) and
〈 ⎛

⎝ rv2 := extractIHL(q);
rv1 := (fn x2 => fn x1 =>

fn x : etype(A) => x2(x1x)) !rv2 !rv1

⎞
⎠ , σ1

〉
� 〈!rv1, σ2〉

〈 ⎛
⎝ rv2 := extractIHL(q);

rv1 := (fn x2 => fn x1 =>
fn x : etype(A) => x2(x1x)) !rv2 !rv1

⎞
⎠ , σ2

〉
� 〈!rv1, σ3〉

and
. . .
and〈 ⎛

⎝ rv2 := extractIHL(q);
rv1 := (fn x2 => fn x1 =>

fn x : etype(A) => x2(x1x)) !rv2 !rv1

⎞
⎠ , σn−1

〉
� 〈!rv1, σn〉

(6.21)

with
〈b, σi〉� 〈true, σi〉 (6.22)

(i = 1, . . . , n− 1) and
〈b, σn〉� 〈false, σn〉 (6.23)

Observe that (6.22) and Corollary 6.2.1 entail

(σi, σi+1) � tologici(b) = true (6.24)

for i = 1, . . . , n − 1. Similarly, (6.23) and Corollary 6.2.1 tell us that, for any
state τ

(τ, σn) � tologicf(b) = false (6.25)

Let σ′′
i (i = 1, . . . , n− 1) denote the state such that
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〈extractIHL(q), σi〉 �̂ 〈answerσi
, σ′′

i 〉 (6.26)

for some return value answerσi . Let σ′
i (i = 1, . . . , n− 1) denote the state such

that
〈rv1 := extractIHL(q), σi〉 �̂ 〈answerσi

, σ′
i〉 (6.27)

so that
〈rv2 := extractIHL(q), σi〉 � 〈!rv2, σ

′
i〉

�̂ 〈answerσi
, σ′

i〉
The last line holds by definition of the operational semantics for assignment
(rule (assign) of Fig. 4.6 in Chapter 4, p. 108) and by (6.26), because it must
be the case that

σ′
i(rv2) = answerσi (6.28)

Observe that σ′′
i and σ′

i differ only over rv2. Also, by the operational se-
mantics for assignment (rule (assign) of Fig. 4.6 in Chapter 4, p. 108), σ′

i and
σi+1 must differ only over rv1 in

〈rv1 := (fn x2 => fn x1 => fn x : etype(A) => x2(rv1x))
!rv2 !rv1, σ′

i〉� 〈!rv1, σi+1〉

Thus, it must be the case that

σ′′
i and σi+1 differ only over rv1 and rv2 in〈⎛⎝rv2 := extractIHL(q);

rv1 := (fn x2 =>
fn x1 => fn x : etype(A) => x2(x1x)) !rv2 !rv1

⎞⎠ , σi

〉
� 〈rv1, σi+1〉 (6.29)

for i = 1, . . . , n− 1.
By inspection of the evaluation sequence (6.20),

σ1(rv1) = fn x : etype(A) => x (6.30)

Also, because rv1 does not occur in extractIHL(q), the execution of extractIHL(q)
from σi to σ′

i will not affect the value of rv1: that is, σ′
i(rv1) = σi(rv1). So, by

inspection of the evaluation sequence (6.21):

σi+1(rv1) is the normal form of fn x : etype(A) => σ′
i(rv2)(σi(rv1)x)

(i = 1, . . . , n− 1). (see Definition 4.1.3 of Chapter 4, p. 99 for the definition of
normal form). That is to say,

σi+1(rv1) is the normal form of fn x : etype(A) => answerσi(σi(rv1)x) (6.31)

(i = 1, . . . , n− 1).
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So, because answer = σn(rv1), when n > 1, answer must be the normal
form of

fn x : etype(A) => (answerσn−1(fn x : etype(A) =>
answerσn−1(. . . answerσ1(fn x : etype(A) => xx) . . .)x)x)

That is, if n > 1

answer = fn x : etype(A) => answerσn−1(answerσn−2 . . . (answerσ1x) . . .)
(6.32)

Also, by (6.30), when n = 1 (that is, when σ′ = σ1),

answer = fn x : etype(A) => x (6.33)

Take arbitrary τ, τ ′′ such that

〈extractIHL(q), τ〉 �̂ 〈answerτ , τ ′′〉

By (6.16) and (6.17), the definition of Skolem form and the fact that A[s̄i/v̄]
and A[s̄f/v̄] are not Harrop,

(τ, τ ′′) �ι ∀x : etype(A[s̄i/v̄]) • Sk(A[s̄i/v̄])[x/fA[s̄i/v̄]]
∧ tologici(b) = true⇒ A[s̄f/v̄][answerτ x/fA[s̄f /v̄]] (6.34)

Recall that rv1 and rv2 do not occur in

∀x : etype(A[s̄i/v̄]) • Sk(A[s̄i/v̄])[x/fA[s̄i/v̄]] ∧ tologici(b) = true⇒
A[s̄f/v̄][answerτ x/fA[s̄f /v̄]]

So, by Lemma 6.2.4, for any τ ′ that differs from τ ′′ only over state variables
rv1 and rv2, it must be the case that

(τ, τ ′) �ι ∀x : etype(A[s̄i/v̄]) • Sk(A[s̄i/v̄])[x/fA[s̄i/v̄]]
∧ tologici(b) = true⇒ A[s̄f/v̄][answerτ x/fA[s̄f /v̄]] (6.35)

Also, recall (6.29): that σ′′
i and σi+1 differ only over rv1 and rv2 in

〈⎛⎝rv2 := extractIHL(q);
rv1 := (fn x2 =>
fn x1 => fn x : etype(A) => x2(x1x)) !rv2 !rv1

⎞⎠ , σi

〉
� 〈rv1, σi+1〉

for i = 1, . . . , n− 1.
This fact and (6.35) mean that
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(σi, σi+1) �ι ∀x : etype(A[s̄i/v̄]) • Sk(A[s̄i/v̄])[x/fA[s̄i/v̄]] ∧
tologici(b) = true⇒ A[s̄f/v̄][answerσi x/fA[s̄f /v̄]] (6.36)

for i = 1, . . . , n− 1.
End of observations.
We wish to show (6.19):

(σ, σ′) �ι
∀x : etype(A[s̄i/v̄]) • Sk(A)[s̄i/v̄][x/fA[s̄i/v̄]]⇒
(Sk(A)[s̄f/v̄][answer x/fA[s̄f /v̄]] ∧ tologicf(b) = false)

To do this, we take an arbitrary x : etype(A[s̄i/v̄])-variant ι′ of ι with the
assumption

(σ, σ′) �ι′ Sk(A)[s̄i/v̄][x/fA[s̄i/v̄]] (6.37)

and we prove
(σ, σ′) �ι′ Sk(A)[s̄f/v̄][answer x/fA[s̄f /v̄]] (6.38)

and
(σ, σ′) �ι′ tologicf(b) = false (6.39)

Proof of (6.39).
By (6.25),

(τ, σn) �ι tologicf(b) = false

for any τ . So, in particular,

(σ0, σn) �ι′ tologicf(b) = false

which is the same as writing (6.38), as required.
End of proof of (6.39).
Proof of (6.38)
There are two subcases:

1. σ = σ0 and σ′ = σ1 (n = 1).
2. σ = σ0 and σ′ = σn (n > 1).

Subcase (1). In this case, by (6.33),

answer = fn x : etype(A) => x

and so,
answer x �Σp

x

Then, by Lemma 6.2.5, (6.37) may be rewritten as

(σ0, σ1) �ι′ Sk(A)[s̄i/v̄][answer x/fA[s̄i/v̄]] (6.40)

Now, σ0 = σ and σ1 = σ′ only differ over rv1, which does not occur in

Sk(A)[s̄i/v̄][answer x/fA[s̄i/v̄]]
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we may use Lemma 6.2.3 on (6.40) to give

(σ, σ′) �ι′ Sk(A)[s̄f/v̄][answer x/fA[s̄f /v̄]] (6.41)

Subcase (2). If σ′ = σn for n > 1, we proceed as follows.
Define

a1 = x
ak = answerσk−1(ak)

for k = 2, . . . , n. As usual, we take ai to be defined as tologic(ai).
It will be important to note that, as answerσi

is state-free, it is the case
that each ak is also state-free. Consequently, the only state references in

Sk(A)[s̄f/v̄][aj/fA[s̄f /v̄]]

are s̄f .
By expanding the definition of an, we obtain

an = answerσn−1(answerσn−2 . . . (answerσ1x) . . .)

We will next show, for any j = 2, . . . , n− 1

(σj , σj+1) �ι′ Sk(A)[s̄f/v̄][aj+1/fA[s̄f /v̄]] (6.42)

We proceed by induction.
Base case. First, note that (6.37) can be written as

(σ0, σn) �ι′ Sk(A)[s̄i/v̄][x/fA[s̄i/v̄]]

But, because σ0 and σ1 differ only over rv1, which does not occur in
Sk(A)[s̄i/v̄][x/fA[s̄i/v̄]], by Lemma 6.2.4, we know this means

(σ1, σn) �ι′ Sk(A)[s̄i/v̄][x/fA[s̄i/v̄]]

Also, because final states are not used in Sk(A)[s̄i/v̄][x/fA[s̄i/v̄]], by Lemma
6.2.6, we know that

(σ1, σ2) �ι′ Sk(A)[s̄i/v̄][x/fA[s̄i/v̄]] (6.43)

So, we can instantiate (6.35) with (6.43) and (6.24 with i = 1), to give

(σ1, σ2) �ι′ A[s̄f/v̄][answerσ1 x/fA[s̄f /v̄]]

and we are done.
Inductive step. Assume that

(σk, σk+1) �ι′ Sk(A)[s̄f/v̄][ak+1/fA[s̄f /v̄]]

holds for some k < n− 2.
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Because no initial state references occur in Sk(A)[s̄f/v̄], by Lemma 6.2.2,
this means

(σk+1, σk+2) �ι′ Sk(A[s̄i/v̄])[s̄i/v̄][ak+1/fA[s̄i/v̄]] (6.44)

We can instantiate (6.35) setting τ = σk+1 and τ ′ = σk+2 and with (6.44)
and (6.24) setting i = k + 1 we obtain

(σk+1, σk+2) �ι′ A[s̄f/v̄][answerσk+1 ak/fA[s̄f /v̄]]

which means
(σk+1, σk+2) �ι′ A[s̄f/v̄][ak+2/fA[s̄f /v̄]]

as required and (6.42) is proven.
So, by (6.42), we know, in particular, that

(σn−1, σn) �ι′ Sk(A)[s̄f/v̄][an/fA[s̄f /v̄]]

Now, because initial state references do not occur in Sk(A[s̄f/v̄]), by Lemma
6.2.6 this means that

(σ0, σn) �ι′ Sk(A)[s̄f/v̄][an/fA[s̄f /v̄]]

Also, because n > 1, (6.32) must hold, that is,

answer = fn x : etype(A) =>
answer(σn−1,σn−1′)(answer(σn−2,σn−2′) . . . (answer(σ1,σ1′)x) . . .)

we know that
answer x �Σp an

and by Lemma 6.2.5,

(σ0, σn) �ι′ Sk(A)[s̄f/v̄][answer x/fA[s̄f /v̄]]

End of proof of (6.38). Finally, by the definition of �, because we took an
arbitrary ι′, we have

(σ, σ′) �ι ∀x : etype(A[s̄i/v̄]) • Sk(A)[s̄i/v̄][x/fA[s̄i/v̄]]⇒
(Sk(A)[s̄f/v̄][answerx/fA[s̄f /v̄]] ∧ tologicf(b) = false)

Case 3: Proof ends in an application of (seq). Assume tw
T is of the form

seq(pw1
A[s̄i/v̄]⇒B[s̄f /v̄], qw2
B[s̄i/v̄]⇒C[s̄f /v̄])w1;w2
A[s̄i/v̄]⇒C[s̄f /v̄]

derived by

� pw1
A[s̄i/v̄]⇒B[s̄f /v̄] � qw2
B[s̄i/v̄]⇒C[s̄f /v̄]

� seq(pw1
A[s̄i/v̄]⇒B[s̄f /v̄], qw2
B[s̄i/v̄]⇒C[s̄f /v̄])w1;w2
A[s̄i/v̄]⇒C[s̄f /v̄]
(seq)
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By the IH, we know that

extractIHL(p) retrι (A[s̄i/v̄]⇒ B[s̄f/v̄]) (6.45)

and
extractIHL(p) retrι (B[s̄i/v̄]⇒ C[s̄f/v̄]) (6.46)

There are four cases: 3a) A is not Harrop, B is not Harrop, and C is not
Harrop, 3b) A is Harrop, B is not Harrop, and C is not Harrop, 3c) A is Harrop
and B is Harrop and C is not Harrop, 3d) A is Harrop and B is Harrop and
C is not Harrop. (All other possibilities involve the conclusion formula being
Harrop, and so are dealt with already.)

Case 3a: A is not Harrop, B is not Harrop, and C is not Harrop. In this
case, by the definition of Skolem form, and because etype(A) = etype(A[s̄i/v̄]),
we are required to prove

(σ, σ′) �ι ∀x : etype(A) • Sk(A[s̄i/v̄])[x/fA[s̄i/v̄]]⇒
Sk(C[s̄f/v̄])[(answer x)/fC[s̄f /v̄]] (6.47)

To show this, we pick an arbitrary x : etype(A)-variant of ι, ι′, with the
following assumption

(σ, σ′) �ι′ Sk(A[s̄i/v̄])[x/fA[s̄i/v̄]] (6.48)

and wish to derive

(σ, σ′) �ι′ Sk(C[s̄f/v̄])[(answer x)/fC[s̄f /v̄]] (6.49)

We require the following observations.
Beginning of observations for Case 3a.
By (6.45), given any τ, τ ′ and side-effect-free program value a1, if

〈extractIHL(p), τ〉 �̂ 〈a1, τ
′〉

then we know that, for a1 = tologic(a1),

(τ, τ ′) � ∀x : etype(A[s̄i/v̄]) • Sk(A[s̄i/v̄])[x/fA[s̄i/v̄]]⇒
Sk(B[s̄f/v̄])[(a1 x)/fB[s̄f /v̄]] (6.50)

Similarly, (6.46) means that, given any τ, τ ′ and side-effect-free program
value a2, if

〈extractIHL(q), τ〉 �̂ 〈answerτ , τ ′〉
then we know that, for a2 = tologic(a2),

(τ, τ ′) � ∀x : etype(B[s̄i/v̄]) • Sk(B[s̄i/v̄])[x/fA[s̄i/v̄]]⇒
Sk(C[s̄f/v̄])[(a2 x)/fB[s̄f /v̄]] (6.51)
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In this case,

extractIHL(t) is rvp := extractIHL(p);
rvq := extractIHL(q);
(fn xp => fn xq =>
fn x : etype(A) => xq (xpx))
!rvp !rvq

Because we assume extractIHL(t) terminates, by the operational semantics
the exection of extractIHL(t) must result in a series of five states,

σ = σ0, σ1, σ2, σ3, σ4 = σ′

such that 〈⎛⎜⎜⎜⎜⎝
rvp := extractIHL(p);
rvq := extractIHL(q);
(fn xp => fn xq =>
fn x : etype(A) => xq (xpx))
!rvp !rvq

⎞⎟⎟⎟⎟⎠ , σ0

〉

�̂

〈⎛⎝fn xp => fn xq =>
fn x : etype(A) => xq (xpx))
!rvp !rvq

⎞⎠ , σ4

〉
�̂ 〈answer, σ4〉

with
〈extractIHL(p), σ0〉 �̂ 〈a1, σ1〉

〈rvp := extractIHL(p), σ1〉 � 〈!rvp, σ2〉
〈extractIHL(q), σ2〉 �̂ 〈a2, σ3〉

〈rvq := extractIHL(q), σ3〉 � 〈!rvq, σ4〉
(6.52)

where
σ2 = σ1[rvp �→ a1], (6.53)

σ4 = σ3[rvq �→ a2] (6.54)

and

answer = σ4

⎛⎝fn xp =>fn xq =>
(fn x : etype(A) => xq (xpx))
!rvp !rvq

⎞⎠ (6.55)

Also, because both rvp does not occur in extractIHL(q), it must be the case
that

σ4(rvp) = σ2(rvp) = a1σ4(rvq) = a2 (6.56)

So, (6.55) and (6.56) together entail

answer = fn x : etype(A) => a2 (a1x) (6.57)

a pure, state-free term.
End of observations for Case 3a.
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Now, as Sk(A[s̄i/v̄])[x/fA[s̄i/v̄]] does not contain final state identifiers, we
may apply Lemma 6.2.6 to (6.48), giving

(σ0, σ1) �ι′ Sk(A[s̄i/v̄])[x/fA[s̄i/v̄]] (6.58)

Also, by the execution (6.52), we know that

〈extractIHL(p), σ0〉 �̂ 〈a1, σ1〉

and so, by (6.50),

(σ0, σ1) � ∀x : etype(A[s̄i/v̄]) • Sk(A[s̄i/v̄])[x/fA[s̄i/v̄]]⇒
Sk(B[s̄f/v̄])[(a1 x)/fB[s̄f /v̄]] (6.59)

Then, by the definition of �, (6.59) and (6.58) yield

(σ0, σ1) �ι′ Sk(B[s̄f/v̄])[(a1 x)/fB[s̄f /v̄]]

By (6.53), σ1 and σ2 differ only over rvp, which does not occur in

Sk(B[s̄f/v̄])[(a1 x)/fB[s̄f /v̄]]

So, by Lemma 6.2.4,

(σ0, σ2) �ι′ Sk(B[s̄f/v̄])[(a1 x)/fB[s̄f /v̄]] (6.60)

We then apply Lemma 6.2.2 to (6.60) to give

(σ2, σ3) �ι′ Sk(B[s̄i/v̄])[(a1 x)/fB[s̄i/v̄]] (6.61)

Now, by the execution (6.52), we know that

〈extractIHL(q), σ2〉 �̂ 〈a2, σ3〉

and so, by the IH (6.51),

(σ2, σ3) � ∀x : etype(B[s̄i/v̄]) • Sk(B[s̄i/v̄])[x/fA[s̄i/v̄]]⇒
Sk(C[s̄f/v̄])[(a2 x)/fB[s̄f /v̄]] (6.62)

Then, by the definition of �, (6.62) and (6.61) yield

(σ2, σ3) �ι′ Sk(C[s̄f/v̄])[(a2 (a1 x))/fC[s̄f /v̄]] (6.63)

By (6.54), σ3 and σ4 differ only over rvq, which does not occur in

Sk(C[s̄f/v̄])[(a2 (a1 x))/fC[s̄f /v̄]]

so, by Lemma 6.2.4,
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(σ2, σ4) �ι′ Sk(C[s̄f/v̄])[(a2 (a1 x))/fC[s̄f /v̄]] (6.64)

But, as initial state values do not occur in

Sk(B[s̄f/v̄])[(a2 (a1 x))/fC[s̄f /v̄]]

we can use Lemma 6.2.6 on (6.64) to give

(σ0, σ4) �ι′ Sk(C[s̄f/v̄])[(a2 (a1 x))/fC[s̄f /v̄]] (6.65)

Now, by (6.57),

answer x �Σp (fn x : etype(A) => a2 (a1x)) x �Σp (a2 (a1x))

So we can apply Lemma 6.2.5 to (6.65) to give

(σ0, σ4) �ι′ Sk(C[s̄f/v̄])[answer x/fC[s̄f /v̄]]

This is (6.49), as required.
Cases 3b–3d. The remaining cases are similar in approach to 3a.
Case 4: Proof ends in an application of (ite). Assume that tw
T is of the

form
ite(p, q)if b then w1 else w2
C

derived
� pw1
tologici(b)=true⇒C � qw2
tologici(b)=false⇒C

� ite(p, q)if b then w1 else w2
C ite

We need to show that

(σ, σ′) �ι Sk(C)[answer/fC ] (6.66)

Because tologici(b) = true is Harrop, by the IH

extractIHL(p) retrι tologici(b) = true⇒ C (6.67)

Similarly, tologici(b) = false is Harrop, by the IH

extractIHL(q) retrι tologici(b) = false⇒ C (6.68)

Using (6.67) and (6.68) we obtain

extractIHL(p) retrι tologici(b) = true⇒ C (6.69)

and
extractIHL(q) retrι tologici(b) = false⇒ C (6.70)

So, by the definition of retr and Sk, (6.69) means that, for any states τ, τ ′,

〈extractIHL(p), τ〉�̂〈answerp, τ
′〉 entails

(τ, τ ′) �ι tologici(b) = true⇒ Sk(C)[answerp/fC ] (6.71)
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and (6.70) means that, for any states τ, τ ′

〈extractIHL(q), τ〉�̂〈answerq, τ
′〉 entails

(τ, τ ′) �ι tologici(b) = false⇒ Sk(C)[answerq/fC ] (6.72)

Either σ(b) = true or σ(b) = false. We reason over these two cases to
obtain (6.66).

Subcase 4a: σ(b) = true. Then

〈b, σ〉� 〈true, σ〉

and so, by Lemma 6.2.7, this means that

(σ, σ′) �ι tologici(b) = true (6.73)

Also, the operational semantics of extractIHL(t) demands the following holds:

〈if b then extractIHL(p) else extractIHL(q), σ〉�̂〈answer, σ′〉
entails 〈extractIHL(p), σ〉�̂〈answer, σ′〉

So
〈extractIHL(p), σ〉�̂〈answer, σ′〉 (6.74)

Instantiating (6.71) with (6.74) gives

(σ, σ′) �ι tologici(b) = true⇒ Sk(C)[answer/fC ]

Instantiating this with (6.73) gives

(σ, σ′) �ι Sk(C)[answer/fC ]

which establishes (6.66), as required.
Subcase 4b: σ(b) = false. Similar reasoning to the previous subcase will

establish (6.66).
Case 5: Proof ends in an application of (cons). Assume tw
T is of the form

cons(pw
P , qP⇒A)w
A

derived by
� pw
P �Int qP⇒A

� cons(pw
P , qP⇒A)w
A
(cons)

By the IH, we know that

extractIHL(p) retrι P (6.75)

There are two cases, depending on whether P is Harrop or not. We only
deal with the latter situation, as the proof for the former is similar.
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By Theorem 6.2.1,

fn xv : etype(P) => extractInt(q) mr P ⇒ A (6.76)

By Lemma 5.1.1 of Chapter 5 (p. 136), this means that, for any (τ, τ ′),

(τ, τ ′) � ∀xv : etype(P ) • Sk(P )[xv/fP ]⇒ Sk(A)[(a xv)/fA] (6.77)

for any a = tologic(a) where

a = fn xv : etype(P) => extractInt(q)[τ(s̄)/s̄i][τ ′(s̄)/s̄f ] (6.78)

Now, the execution of extractIHL(t) must result in a sequence of four states

σ = σ0, σ1, σ2, σ3 = σ′

such that 〈⎛⎜⎜⎝
ī := s̄; rvp := extract(p); f̄ := s̄;
(fn s̄i :: s̄f =>
fn xv : etype(P) => extractInt(q))
!ī :: f̄ !rvp

⎞⎟⎟⎠ , σ0

〉

�

〈 (fn s̄i :: s̄f =>
fn xv : etype(P) => extractInt(q))
!ī :: f̄ !rvp

, σ3

〉
�̂ 〈answer, σ3〉

(6.79)

where

answer = fn xv : etype(P) => extractInt(q)[σ3(ī)/s̄i][σ3(f̄)/s̄f ] σ3(rvp) (6.80)

and
〈ī := s̄, σ0〉 �̂ 〈a1, σ1〉

〈rvp := extractIHL(p), σ1〉 �̂ 〈ap, σ2〉
〈f̄ := s̄, σ2〉 �̂ 〈a2, σ3〉

(6.81)

so that
σ1 = σ0[ī �→ σ0(s̄)]σ3 = σ2[f̄ �→ σ2(s̄)]σ3(rvp) = ap (6.82)

Now, because ī do not occur in extractIHL(p), (6.82) and inspection of (6.81)
reveal that

σ3(ī) = σ1(ī) = σ0(s̄) (6.83)

Also, because the values of s̄ are unchanged in the assignment f̄ := s̄,

σ3(f̄) = σ2(s̄) = σ3(s̄) (6.84)

So, using (6.82), (6.83) and (6.84) in (6.80) gives

answer = fn xv : etype(P) => extractInt(q)[σ(s̄)/s̄i][σ′(s̄)/s̄f ] ap (6.85)

Define
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aq = fn xv : etype(P) => extractInt(q)[σ(s̄)/s̄i][σ′(s̄)/s̄f ] (6.86)

Then
answer = aq ap (6.87)

By (6.77), it is the case that

(σ, σ′) � ∀xv : etype(P ) • Sk(P )[xv/fP ]⇒ Sk(A)[(aq xv)/fA] (6.88)

Also, given that

〈rvp := extractIHL(p), σ1〉 �̂ 〈ap, σ2〉

we let σ′
1 be the state such that

〈extractIHL(p), σ1〉 �̂ 〈ap, σ
′
1〉

Now, recall the IH, (6.75)

extractIHL(p) retrι P

This means that
(σ1, σ

′
1) �ι Sk(P )[ap/fP ]

Note that σ0 differs from σ1 only over ī, and σ3 differs from σ′
1 only over f̄ and

rvp. So, because ī, f̄ and rvp do not occur in Sk(P )[ap/fP ], by Lemma 6.2.4,
we have

(σ, σ′) �ι Sk(P )[ap/fP ] (6.89)

We instantiate (6.88) with (6.89) to give

(σ, σ′) �ι Sk(A)[(aq ap)/fA]

But then, by (6.87) and Lemma 6.2.5, we have

(σ, σ′) �ι Sk(A)[answer/fA]

as required.
This last case concludes our proof. ��

6.3 The Curry–Howard protocol for program synthesis

In this section, we show that our extraction map leads to an effective application
of the Curry–Howard protocol for the synthesis of IHL-realizers from proofs of
specifications.



200 6 Proofs-as-Imperative-Programs

6.3.1 Logical and computational type theories

In the Curry–Howard protocol of Chapter 3, we gave a general framework for
program synthesis from proofs of specifications, generalizing state-of-the-art
proofs-as-programs to new programming languages and logical contexts.

The protocol requires a logical type theory and a computational type theory.
We take the logical type theory as the LTT (IHL) of Chapter 5.2 (identified as
an LTT for IHL in Section 5.2 p. 149). We take the computational type theory
to be IML of Chapter 4. We shall take our computational type theory to be the
IML (identified as a CTT in Section 4.2, p. 104).

6.3.2 Conformance to the Curry–Howard protocol

The Curry–Howard protocol (Definition 3.2.5, Chapter 3, p. 87) holds between
the LTT (IHL), and IML, for the following reasons

1. There are extraction maps etype from formulae of LTT (IHL) to types of
IML and extract from proof-terms of LTT (IHL) to programs of IML,

extractIHL : PT (LTT (IHL))⇒ Term(IML)
etype : WFF (Σt)⇒ Type(IML)

such that, given a proof d ∈ PT (LTT (IHL)) with the property that

�LTT (IHL) dw
A

then extract(d) is in IML, and is of type etypeA. The maps were given in
Figs. 6.1 and 6.3. The required typing property was shown in Theorem 6.2.2.

2. There is a realizability relation kr between programs and formulae, such
that, for any proof

�LTT (IHL) pw
A

it is true that
extract(p) kr (w �A)

The realizability relation was identified in Definition 6.1.6. The required
property holds by Theorems 6.2.4 and 6.2.5.

6.3.3 Application of the protocol

Recalling the process of protocol application described in Chapter 3, Section
3.3, p. 87, we have sucessfully taken the required steps

1. We defined a signature and a logical calculus that involves the signature
in Chapter 4. This involved deriving some properties that were orthogonal
to the protocol process itself, but which were necessary for deriving the
extraction theorem. Specifically, we provided a semantics for the calculus
(in Chapter 4) and proved soundness (in Chapter 5).
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2. We defined a logical type theory for the logical calculus in Chapter 5.
3. We Identified a programming language and described it as a computational

type theory in Chapter 4.
4. Finally, in this chapter, we completed the process by proving the Curry–

Howard protocol to hold over the above domains.

6.4 Example: electronic banking system

We illustrate our approach to program synthesis using the electronic bank-
ing example used throughout this part of the book. The system consists of a
database of account details, indexed by user identification. In Section 4.5.5 of
Chapter 4, we used IHL to develop a program/formula pair that satisfied the
following property. By using the program to search through the database, it is
possible to obtain a list of all accounts held at the bank by the user, given a
user’s details. This was shown by the following:

� counter := 0;
while y < (length db)− 1 do counter :=!counter + 1�

∃y : (account list) • allAccountsAt(currentUser, y, counterf ) ∧
(counterf < (length db)− 1) = false (6.90)

The formula here is the unSkolemized form of

listAllAccounts(currentUser, y, (length db))

Consequently, when viewed as a specification of a side-effect-free return value,
according to our notion of IHL-realizability, the program/formula pair of (6.90)
specifies a program that, given a user’s details, will search through a database
to obtain all accounts held at the bank by the user, and then return this list.
The program should exhibit the same side-effects as the program of the pair
with respect to the state identifiers used in the formula of the pair.

Section 5.3 of Chapter 5 showed how the proof of (6.90) might be represented
in the logical type theory for IHL.

Using Theorems 6.2.4 and 6.2.5, we can take the proof-term of (6.90) given
in the logical type theory and obtain the required IHL-realizer.

Before examining the IHL-realizer, we make some observations relating about
the subproofs of the theorem and the corresponding subprograms of the realizer.

Note that the proof of (6.90) involved a non-Harrop axiom available to
intuitionistic proofs

y < (length db)− 1⇒ sub(l, y + 1).owner = u ∨ ¬sub(l, y + 1).owner = u

By Assumption 6.1, this axiom is presumed to be associated with a side-effect-
free program PK5.59 that is an intuitionistic modified realizer of (5.59), so that
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(∀x : etype(B) • PK5.59 = inl(x)⇒ Sk(B)[x/fB ])
∧ (∀y : etype(C) • PK5.59 = inr(y)⇒ Sk(C)[y/fC ])

where B and C denote the left and right subformulae of the axiom, respectively.
We use the normalized proof of the theorem. The proof involves a subproof

of the form

�Int counterf = counteri + 1⇒ (counteri < (length db)− 1) = true ∧
∃l : (account list) • allAccountsAt(currentUser, l, counteri)⇒
∃l : (account list) • allAccountsAt(currentUser, l, counterf ) (6.91)

The normalized proof-term corresponding to this proof, p′
5.63, is of the form

specific(abstract rcounterf =counteri+1.

Schema(subst, [[(p′
5.61); r

counterf =counteri+1];
[∀u : user • (counteri < (length db)− 1) ∧

∃l : (account list) • allAccountsAt(u, l, counteri)⇒
∃l : (account list) • allAccountsAt(u, l, m)]

[counteri + 1; counterf ]; [int]]), currentUser)

where p′
5.61 is the normalized form of specific(p5.61, counteri) (p5.61 was defined

Section 5.3 of Chapter 5, p. 159),

use u : user. abstract m(counteri<(length db)−1)∧∃l:(account list).

app(app(abstract ecounteri<(length db)−1.

abstract i∃l:(account list)•allAccountsAt(u,l,counteri).

specific(i, x.fallAccountsAt(u,x,counteri).p5.60), fst(m)), snd(m))

and where p5.60 is a proof-term denoting proof by cases

case app(Axiom(A(5.59)), e) of

inl(gsub(l,y+1).owner=u).show(sub(db, y + 1) :: x, p2),

inr(h¬sub(l,y+1).owner=u).show(x, p3)

We define p′
5.60 by

case app(Axiom(A(5.59)), e) of

inl(gsub(l,counteri+1).owner=u).show(sub(db, counteri + 1) :: x, p′
2),

inr(h¬sub(l,counteri+1).owner=u).show(x, p′
3)

where p′
2 is
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� app(app(app(app(Axiom(A(5.56)), u), x),

counteri), 〈g, f〉)allAccountsAt(u,sub(db,counteri+1)::x,counteri+1)

and p′
3 is

� app(app(app(app(Axiom(A(5.56)),

u), x), counteri), 〈g, f〉)allAccountsAt(u,x,counteri+1)

We denote the modified realizer of (6.91), extractInt(p6.91), by

PP : user→ (account list)→ (account list)

Written in full, PP is

(fn u : user =>
fn m : account list =>
fn i : account list =>
(fn x : account list =>
match PK5.59 with

inl(()) => sub(db, counteri + 1) :: x | inr(()) => x
m)

currentUser)

Inspection shows that the form of PP mirrors the structure of p′
5.63, but with

simplifications achieved by ignoring proof-terms for Harrop formulae.
The normalized proof-term for the required theorem (6.90) was given as

p′
5.72 in Section 5.3 of Chapter 5,

cons(seq(cons(cons(assign(counter, 0),
p5.67), ptrue),wd(cons(assign(counter, counter + 1), p5.63′))), qtrue)

We apply extract to p′
5.72 and obtain the required program

rv1 := fun x:account list => x;
while !counter<(length db) - 1 do
(rv2 := (ic := !counter; counter:=!counter+1;

if := !counter;
(fun counter_i => fun counter_f =>

(PP !counter_i currentUser)) ic if)
rv1 := fun x_2::x_1=> fun x => (x_2 (rv1 x)) !rv2 !rv1;)
!rv1 [];

Inspection of this program’s execution shows that it is indeed an IHL-realizer
for (6.90).
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6.5 Example: synthesis of contracts

We illustrate our approach with a second example. We consider the specification
and synthesis of a routine for processing orders for books at an online bookstore.
The specification involves a disjunction, and, consequently, the return values
of the synthesized program are of disjoint union type. We will briefly discuss
how our program can be considered equivalent to a program with an assertion
contract in the sense defined by Bertrand Meyer’s principle of design-by-contract
[Mey97]. Briefly, an assertion contract is a boolean function that evaluates at
the beginning or end of a program for run-time testing. Disjoint unions can be
used instead of booleans, and, in fact, carry more useful information to define
more complex contracts. This opens up a potentially useful application of our
methods — the synthesis of programs with complex contracts to be used in
systems built using design-by-contract.

6.5.1 Design-by-contract

Design-by-contract is a method of software development, first proposed by
Bertrand Meyer [Mey97]. Its roots are in the Hoare logic and pre- and post-
condition specifications of programs. Design-by-contract is incorporated into
languages such Eiffel and Oberon, and also in specification languages such as the
OCL part of the UML [WK98]. Design-by-contract is often given as a method
of object-oriented and structured program development — for our purposes, we
shall restrict ourselves to examining design-by-contract for isolated imperative
programs.

Briefly, the idea is as follows. When a program is developed, it must be
accompanied with two boolean-valued functions, called assertions. These form
the so-called contract of the program. The boolean functions are called the pre-
and post- condition assertions. Programs are tested at run-time by evaluating
the values of the assertions in a dedicated test suite. If the pre-condition asser-
tion evaluates to true before the program is executed, and the post-condition
evaluates to false, then the program has an error and the designer is altered by
the test suite.

The assertions are defined by the programmer to specify expectations about
code. The programmer writes the code independently of the specification in
the sense there is no guarantee that the code satisfies the contract assertions.
However, testing enables the programmer to systematically check the code’s
validity against logical expectations. In this way, design-by-contract facilitates
a logical, specification-oriented approach to run-time testing of programs.

For example, a program in an Eiffel-like language takes the form:
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pre:
Odd(s)

body:
s:=s+1;

post:
Even(s)

The program consists of a body of code, s := s + 1 and two boolean assertions
Odd(s) and Even(s), before and after the body. The former assertion is true
if the state identifier s contains an odd integer. The latter is true if the state
identifier contains an even integer. The execution of the program proceeds by
evaluating Odd(s), then s := s + 1 and then Even(s). The program will never
generate an error, because it is always the case that the increment of an odd
number is even. However, if the body of the code was replaced with s := s + 2,
any execution would generate an error.
Remark 6.2. Note that, in contrast to the pre- and post-conditions of our version
of the Hoare logic, these assertions are decidable boolean functions. This is why
we refer to these functions as pre- and post-condition assertions, to distinguish
them from our pre- and post-condition predicate formulae. In the literature, the
functions are often simply referred to as pre- and post- conditions.

The assertions of the example are very simple. However, it was noted in
[Mey00] that, as programs become more complex, accompanying assertions will
also grow in complexity. When this happens, it becomes more likely that an as-
sertion can be incorrectly coded — in the sense that the boolean function does
not correctly represent the required specification. The assertions of a program
are side-effect-free. Our program synthesis methods are designed to develop pro-
grams with side-effects and side-effect-free aspects. It is therefore an interesting
question to see if we can use our methods to synthesize programs with provably
correct assertions.

6.5.2 Synthesis of post-conditions in SML

For our purposes, we will consider only programs that use post-condition asser-
tion contracts, without pre-conditions. We leave a full treatment of contracts
for future research.

There is no native support for design-by-contract in SML. We will take
a very simple approach, that will make it easy for us to apply our program
synthesis methods to post-condition contracts.

We will simulate post-conditions as return values of disjoint union type.
That is to say, to be used in design-by-contract development, a SML program
code must have evaluation sequences of the form

〈code, σ〉 �̂ 〈p, σ′〉
where the return value p is of type (t|t), for some type t. The post-condition
assertion for code is taken to be true if post is of the form Inl(a) and false



206 6 Proofs-as-Imperative-Programs

if it is of the form Inr(b). We will assume that such programs are evaluated
within a test suite that will generate appropriate error reports given false post-
conditions.

For example, assume a program that

s :=!s ∗ 2; Even(!s)

consists of some imperative code s :=!s ∗ 2 with return values arising from
Even(!s), of type (Unit|Unit). If the state value !s is even, then the return
value of the program is Inl(()), and Inr(()) otherwise.

Because post-condition assertions are taken to be return values, we can
employ this chapter’s synthesis techniques to contracts. The specification of a
required post-condition assertion is given by a disjunction of the form A ∨ ¬A.
The disjunction specifies the required post-condition as a return value realizer,
of type (etype(A)|etype(¬A)). By Theorems 6.2.4 and 6.2.5, given a proof of the
form

� body �A ∨ ¬A (6.92)

we can extract a program that is visibly side-effect equivalent to body, with the
required post-condition assertion.

6.5.3 Using flawed programs to build new programs

The designer uses the rules of our Hoare logic to make proofs of the form (6.92).
As usual, the designer should only use true properties about given programs.
However, we permit programs to have faults. Faulty programs are reasoned
about as follows. Instead of using formulae that assert the correctness of pro-
grams, we use disjunctive statements stating that the program may or may not
be faulty.

Consider a program designed to connect to a database, connectDB, for ex-
ample. The program is intended to always result in a successful connection,
specified by formula connectedf = true. However, the problem has a fault, and
sometimes results in an unsuccessful connection. This situation is described
truthfully by the disjunction

� connectDB � connectedf = true ∨ ¬connectedf = true

This property is true of the program, and so the program may be used within the
Hoare logic to develop a larger program/formula theorem, without jeapordizing
the truth of the final result.

6.5.4 Order processing system

We consider a program that processes a number of book orders for an online
bookstore. The program first initializes a bulk order in the database. Then the
program takes a list of individual orders and successively adds them to the
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bulk order, until no more individual orders are left. There is a possibility that
the program may corrupt the database. We wish to synthesize this program,
together with a post-condition assertion that determines if the program has
corrupted the database or not.

We make the following domain assumptions:

• We presume there is a SML type of databases, DBT.
• We use the predicate DBCorrupt(d) to say that a database d : DBT is cor-

rupt.
• We take a SML state reference db of reference type DBT, the database to be

manipulated by our required program.
• We use a boolean state reference orderRemaining, to determine if there are

any orders that need to be added to the database db.
• There is a program that initializes the bulk order, init. This program always

leaves the database free of corruption. More formally, we have an axiom

init � ¬DBCorrupt(dbf ) (6.93)

We denote this axiom by A6.93.
• We are given a black-box program add that adds an order request to the

database db. Each time this program is called, there is a chance that the
database may become corrupt. The program should only be called if there
are orders to be processed (that is, if orderRemaining is true). If the status
of the database is known, prior to adding a new entry, we can determine if
the new entry results in corruption or not.
This is stated formally by a non-Harrop axiom,

add � (orderRemainingi = true ∧
(¬DBCorrupt(dbi) ∨DBCorrupt(dbi)))⇒

(¬DBCorrupt(dbf ) ∨DBCorrupt(dbf )) (6.94)

We denote this axiom by A6.94.
• Because axiom A6.94 is non-Harrop, by Assumption 6.1, A6.94 is presumed

to be associated with a side-effect-free program PK, its IHL-realizer.
Let P denote

(orderRemainingi = true ∧
(¬DBCorrupt(dbi) ∨DBCorrupt(dbi)))⇒

(¬DBCorrupt(dbf ) ∨DBCorrupt(dbf ))

so that PK kr P . Then
[[PK]] � P (6.95)

PK ≡P add (6.96)

and
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PK retr P (6.97)

Condition (6.97) is important. It says that PK is a return value realizer of
P . That is, for any σ, σ′ and interpretation ι, if

〈PK, σ〉 �̂ 〈answer, σ′〉

then
(σ, σ′) �ι Sk(P )[answer/fF ]

where Sk(P )[answer/fF ] is of the form

∀x : (Unit|Unit) • (orderRemainingi = true ∧
((∀y : Unit • x = inl(y)⇒ ¬DBCorrupt(dbi)) ∧
(∀y : Unit • x = inr(y)⇒ DBCorrupt(dbi))))

⇒ ((∀y : Unit • (answer x) = inl(y)⇒ ¬DBCorrupt(dbf )) ∧
(∀y : Unit • (answer x) = inr(y)⇒ DBCorrupt(dbf ))

We wish to obtain a program that

• initializes the database, processes each order until no orders remain, and
• provides the required assertion as a return value realizer of

¬DBCorrupt(dbf ) ∨DBCorrupt(dbf )

From (6.94) we can apply (loop) to obtain

while orderRemaining do add�
(¬DBCorrupt(dbi) ∨DBCorrupt(dbi))⇒

((¬DBCorrupt(dbf ) ∨DBCorrupt(dbf )) ∧ orderRemainingf = true) (6.98)

The proof-term for this theorem is simply

wd(Axiom(ADBC−1))

Let True be a provable intuitionistic statement, say ⊥ ⇒ ⊥. It is easy to
derive

�Int(IHL) ¬DBCorrupt(dbf )⇒
(True⇒ (¬DBCorrupt(dbf ) ∨DBCorrupt(dbf ))) (6.99)

by (Ass-I), (∨2-I) and weakening the result with True as hypothesis. But then
by applying (cons) to from (6.93) and (6.99) we can derive

init � True⇒ (¬DBCorrupt(dbf ) ∨DBCorrupt(dbf )) (6.100)

Written in full, the proof-term for this theorem is
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cons(abstract u¬DBCorrupt(dbf ).

app(abstract w¬DBCorrupt(dbf )∨DBCorrupt(dbf ).

abstract xTrue.

fst(〈w, x〉), inl(u)¬DBCorrupt(dbf )∨DBCorrupt(dbf )),Axiom(ADBC−2))

We will denote this proof-term by p6.100.
We apply (seq) to (6.100) and (6.98) to obtain

init; while orderRemaining do add � True⇒
((¬DBCorrupt(dbf ) ∨DBCorrupt(dbf )) ∧ orderRemainingf = true)

(6.101)

with proof-term
seq(p6.100,wd(Axiom(ADBC−1)))

It is a simple task to derive

�Int(IHL) (True⇒ (¬DBCorrupt(dbf ) ∨DBCorrupt(dbf )) ∧
orderRemainingf = true)⇒

(¬DBCorrupt(dbf ) ∨DBCorrupt(dbf )) ∧ orderRemainingf = true (6.102)

with proof-term abstract l. app(l, abstract v⊥. v⊥) where l is of type

True⇒ ((¬DBCorrupt(dbf ) ∨DBCorrupt(dbf )) ∧
orderRemainingf = true)

We will abbreviate this proof-term by p6.102.
By (cons) applied to (6.101) and (6.102) we have

� init; while orderRemaining do add�
(¬DBCorrupt(dbf ) ∨DBCorrupt(dbf )) ∧ orderRemainingf = true

Finally, we can apply(∧1-E) we obtain

init; while orderRemaining do add�
¬DBCorrupt(dbf ) ∨DBCorrupt(dbf ) (6.103)

with proof-term

fst(cons(seq(p6.100,wd(Axiom(ADBC−1))), p6.102))

Observe that the program of theorem (6.103) satisfies one of the system
requirements: it initializes the database, processes each order until no orders
remain. However, this program is not sufficient for our needs. Recall that our
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system is required to include a post-condition assertion, the return value realizer
of

¬DBCorrupt(dbf ) ∨DBCorrupt(dbf )

The full system, with accompanying post-condition, is synthesized by ap-
plying the extraction map to the proof-term for (6.103). This results in an SML
program of the form:

i_1 := !db;
rv_r := (
rv_p := (
i_2 := !db; init; f_2 := !db;
((fn s_i => fn s_f => Inl(())) i_2 f_2);

)
rv_q := (
rv_1 := (fn x:Unit|Unit => x);
while OrderRemaining do
rv_2 := PK;
rv_1 := (fn x_2 => fn x_1 => fn x:Unit|Unit =>

x_2 (x_1 x)) !rv_2 !rv_1;
!rv_1

)
(!rv_q !rv_p)
)

f_1 := !db;
(fn s_i => fn s_f => fn x:Unit|Unit => x) !i_1 !f_1 !rv_r;

To understand this program, it is helpful to consider the equivalent, optimised
form:

rv_r := (
rv_p := (init; Inl(()))
rv_q := (
rv_1 := (fn x:Unit|Unit => x);
while OrderRemaining do
rv_2 := PK;
rv_1 := (fn x_2 => fn x_1 => fn x:Unit|Unit =>

x_2 (x_1 x)) !rv_2 !rv_1;
!rv_1;

)
(!rv_q !rv_p)
)

!rv_r;

Equivalence of side-effects and of return values is easily shown, because the
values of i 1 and i 2 are not used anywhere except

(fn s_i => fn s_f => fn x:Unit|Unit => x) !i_1 !f_1 !rv_r
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which, by the operational semantics is equivalent to rvr. Similarly, the values
of i 2 and i 1 are not used anywhere except

((fn s_i => fn s_f => Inl(())) i_2 f_2)

which is equivalent to Inl(()) under any evaluation.
This program will initialize the database, by calling init and then, using

the while loop, it will processes each order until no orders remain. Also, by
virtue of our extraction techniques, it forms a return value realizer of

¬DBCorrupt(dbf ) ∨DBCorrupt(dbf )

Assume an initial state such that only 3 orders need to be processed —
that is, OrderRemaining has the value true for 3 calls to PK. Then, by the
operational semantics, the extracted program will result in a return value of
the form

rPK3(rPK2(rPK1Inl(()))) (6.104)

where rPK1, rPK2 and rPK3 are modified realizers of

(orderRemainingi = true ∧ (¬DBCorrupt(dbi) ∨DBCorrupt(dbi)))
⇒ (¬DBCorrupt(dbf ) ∨DBCorrupt(dbf )) (6.105)

for states after the first, second, and third calls to PK, respectively.
Condition (6.97) above is equivalent to the following condition on terms

(rPKi t) (i = 1, 2, 3). For each call to PK, if the database is known to be either
corrupt (t is of the form Inr(())) or not corrupt (t is of the form Inl(())) prior
to the call, (rPKi t) is guaranteed to tell us if the database is either corrupt
((rPKi t) evaluating to Inr(())) or not corrupt ((rPKi t) evaluating to Inl(()))
after the call. (This is true by the fact that PK is a return value realizer of
(6.105).)

Thus, it can be seen that (6.104) will provide a return value realizer of

¬DBCorrupt(dbf ) ∨DBCorrupt(dbf )

for the initial and final states of the evaluation.
The extraction map produces the required program and post-condition as-

sertion. The assertion will always return Inl(()) or Inr(()), telling us if the
program evaluation has resulted in the database becoming corrupt or not.
Remark 6.3. Our work has applied constructive methods to the synthesis of
imperative programs, taking realizability as a specification of pure functional
return value terms. However, return values are not the only places in an imper-
ative program where pure functional terms may occur.

Also, in the case of languages such as Eiffel side-effect-free boolean assertions
are sometimes used for run-time testing of programs. These assertions can be
understood as functional return values of boolean range [Mey00]. It would be an
interesting and potentially fruitful topic to examine how our methods of return
value synthesis could be adapted to the synthesis of such assertions.
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6.6 Discussion

This chapter concludes Part III of the monograph. Chapter 4 defined IHL. Chap-
ter 5 discussed issues relating to semantics and gave a soundness theorem, show-
ing that IHL theorems represent truths about SML program side-effects. It also
showed how IHL can be represented as a logical type theory, in the style of the
Curry–Howard isomorphism for constructive logic, where proofs are given as
terms and program/formula pairs as types.

In this chapter we have achieved our ultimate goal of adapting proofs-as-
programs to IHL, building upon the results of previous chapters. We applied the
Curry–Howard protocol of Chapter 3 from Part II. A new notion of realizability
was given between IHL program/formula pairs and SML programs — where a
pair specifies a required program in terms of side-effects and a return-value. We
then defined an extraction map from proofs in the logical type theory of Chapter
5, to realizing imperative SML programs that are terms of a computational type
theory.

These results show a successful and practical approach to merging construc-
tive proofs-as-programs with Hoare logic. We retain the advantages of both
methods, using them to target their concerns separately. Hoare logic is retained
to reason about and develop a program in terms of side-effects. Constructive
realizability is adapted to reason and develop functional return-values. Through-
out the extraction process, programs with both aspects are synthesized from
proofs.

To the best of our knowledge, this is the first time such an approach has
been given.

Nondeterminism and total correctness have long been understood in exten-
sions of the Hoare logic. It would be interesting to examine how our results
could be adapted to such extensions.

Our work has applied constructive methods to the synthesis of imperative
programs, taking realizability as a specification of pure functional return value
terms. However, return values are not the only places in an imperative program
where pure functional terms may occur. In the case of languages such as Eiffel
[Mey97], side-effect-free boolean assertions are sometimes used for the run-time
testing of programs. In general, boolean assertions can contain complex func-
tional aspects, such as higher-order abstractions [Mey00]. We have briefly shown
by example how these assertions can be understood as functional return values
of boolean range, and how they can be synthesized using our approach. It would
be an interesting and potentially fruitful topic to develop these results further
to an industrial strength approach to assertion synthesis, for a language such
as Eiffel.

We leave such investigations to future research.
The work of this part has been an application of the Curry–Howard protocol

of Part II. Its success and utility provide a justification for the protocol as a
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good framework for generalizing proofs-as-programs. In the next part of the
book, we shall provide a second application of the protocol in the domain of
structured algebraic specifications and structured program synthesis.



Part IV

Structured Proofs-as-Programs



7

Reasoning about Structured Specifications

In this chapter, we introduce a logical system, called the Structured Specifica-
tion Logic (SSL), for reasoning constructively about structured specifications.
We consider specifications written in the Common Algebraic Specification Lan-
guage (CASL) as defined in the CoFI group’s standard [CoF01]. Our logic is
compositional in the sense that proofs about a structured specifications are
given in a modular fashion, using knowledge about sub-specifications to derive
knowledge about composite specifications. This promotes the desirable features
of a divide-and-conquer approach and proof reuse.

SSL is based on one of the first compositional proof systems for structured
specifications, defined by Martin Wirsing in [Wir91]. (See the introduction of
Chapter 1 for a review of related work.) Peterreins, Crossley, and Wirsing
[Pet96, WCP98] extended that calculus to a natural deduction system. Their
system was concerned with structured specifications in an ASL-like kernel lan-
guage [Wir86, ST88a], involving basic operators for composing specifications
(renaming and hiding signatures and taking unions of specifications). That work
was given as a natural deduction system and used classical logic.

The novelty of the SSL system is as follows. We simplify the rules of the orig-
inal calculus of Peterreins, Crossley, and Wirsing, dividing them into structural
and logical classes. We use CASL syntax for structured specifications instead
of ASL. Also, we make the calculus constructive.

Theorems of our calculus consist of labelled formulae, of the form

�SSL Sp � P

where Sp is a structured specification from CASL and P is a many-sorted
formula that is derivable from the axioms of Sp via constructive reasoning. It
will be shown using soundness that P is true for the models of Sp.

Our calculus involves structural and logical rules, permitting us to do two
things.

1. Reasoning about specifications. This is achieved by means of logical rules
that augment the rules of intuitionistic many-sorted logic to deal with speci-
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fications. For example, we define the following rule to prove the conjunction
(A ∧ B) from the axioms of a specification Sp, given that we already have
proofs of A and B from Sp:

Γ1 � Sp �A Γ2 � Sp �B

Γ1, Γ2 � Sp � (A ∧B)
(∧-I)

This rule is the usual constructive rule for (∧-I), augmented to accommodate
specification labels.

2. Building new specifications. This is done by adding so-called structural rules
that, given a theorem, permit us to change the specification label. In this
chapter, structural rules correspond to the standard ways of creating struc-
tured specifications as presented in CASL: translating, hiding signatures,
taking unions, and extending specifications. For instance, we define the fol-
lowing rule,

Γ �SSL Sp 1 �A

Γ �SSL (Sp 1 and Sp 2) �A
(union1)

which tells us that if A is true about Sp 1, then A is also true about the
union of Sp 1 and Sp 2.1 In Chapter 10, we provide additional structural
rules that deal with defining and instantiating generic (parametrized) spec-
ifications.

This process of reasoning about and constructing new specifications is similar to
the Hoare logic of Part III, which also had a notion of manipulating formulae
and the associated information carried by labels. In the case of Hoare logic,
the labels were imperative programs. In the present case, they are structured
specifications. The analogy is continued in the next chapter, where we define
a logical type theory for SSL with labelled formulae treated as types, and in
Chapter 9, where we adapt proofs-as-programs to SSL, defining a realizability
notion for labelled formulae.

The chapter is organized as follows:

• In Section 7.1, we provide an overview of background knowledge and define
the basic specifications used in CASL.

• Section 7.2 defines the necessary concepts of CASL structured specifications.
• Our logic is presented in Section 7.3.
• Section 7.4 gives a soundness theorem.
• Section 7.5 provides a summary and discussion of our results.

We illustrate our work with a password checking system example, similar
to that examined in Chapter 2 of Part II. We show how to specify and reason
about this system in a structured fashion. We will continue to use this example
in the following two chapters of this part, illustrating how our reasoning can be
used to extract correct programs and construct specification refinements.
1 This is a specialized version of the (union1) rule defined in this chapter: see par-

ticularly Remark 7.16 of Section 7.3, and the list of structural rules in Fig. 7.5,
p. 239.
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7.1 Specifications

In this section, we outline the important concepts of many-sorted signatures, ba-
sic specifications, and models, as provided in the CASL CoFI document [CoF01].

The ideas of this section are all from elementary model theory. A basic spec-
ification consists essentially of a signature and a set of axioms over a signature.
From a computational perspective, basic specifications provide a means of defin-
ing simple, unstructured components. The semantics of a basic specification is
the class of all models that satisfy the axioms. Semantics is important when
specifying components because classes of models can be considered to denote a
range of possible implementations.

Later in this chapter we will be representing, and reasoning about, SML
programs using the CASL syntax for basic specifications. We will only be inter-
ested in SML programs that implement total functions. So, in order to minimize
the technical problems of representing such programs in our specifications, we
confine ourselves to basic specifications with total functions, although partial
functions are permitted in CASL.

7.1.1 Many-sorted signatures

We use the COFI document’s definition of a many-sorted signature [CoF01, p.
3], but restricted to involve only total function symbols.

Definition 7.1.1 (Many-sorted signature with total functions). A
many-sorted signature Σ = 〈S, TF, P 〉 consists of:

• a set S of sorts;
• sets TFw,s of total function symbols for each function profile (w, s) consisting

of a word sequence of argument sorts w ∈ S∗ and a result sort s ∈ S
(constants are treated as functions with no arguments);

• sets Pw of predicate symbols for each predicate profile consisting of a word
sequence of argument sorts w ∈ S∗.

We overload ∈ to denote membership of sorts, functions, or predicates in the
appropriate sets of a signature. That is, given a sort symbol s we write s ∈ Σ
if s ∈ S. Similarly, for a function symbol f and a predicate symbol A, we write
f ∈ Σ and A ∈ Σ if f ∈ TF and A ∈ P respectively.

Constants and functions are also referred to as operations.
Remark 7.1. CASL signatures are the standard notion of signatures. They are
similar to those of Definition 2.1.1, Chapter 2 of Part II. However, we do not
(yet) include functional sorts — and the terms of our signatures as they will
be defined in this chapter are not lambda terms. In Chapter 9, we will ex-
tend CASL signatures and terms to include functional sorts and also lambda
abstraction and application, for the purposes of program extraction. However,
for the purposes of this chapter, it is only necessary to understand first-order
many-sorted signatures.
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Remark 7.2. Conforming to CASL syntax, given a signature Σ = 〈S, TF, P 〉,
we will often denote membership to a set of TF using product and function
typing notation. That is, rather than writing

f ∈ TFs1...sn,s

we will simply write
f : (s1 × . . .× sn)→ s

for s1 . . . sn ∈ S∗ and a result sort s ∈ S.
As in the previous part, and also following the CoFI standard [CoF01, p.

3], the symbols that identify operations and predicates may be overloaded,
occurring in more than one of the sorted sets. Whenever there is ambiguity in
sentences, function symbols f and predicate symbols P should be qualified by
profiles, written fw,s and pw respectively. We omit these profiles when there is
no ambiguity.

We will require a definition of signature morphisms.

Definition 7.1.2 (Many-sorted signature morphism). A many-sorted sig-
nature morphism

σ : 〈S, TF, P 〉 → 〈S′, TF ′, P ′〉
is a mapping such that

1. σ(S) ⊆ (S′)
2. σ(TF ) ⊆ TF ′

3. σ(P ) ⊆ P ′

4. if f ∈ TFw,s, then σ(f) ∈ TF ′
σ∗(w),σ(s)

5. if Q ∈ Pw then σ(Q) ∈ P ′
σ(w)

where (given w = s1 . . . sn) σ∗(w) = σ(s1) . . . σ(sn).

Definition 7.1.3. We define CSig to be the category with signatures as objects
and signature morphisms as morphisms.

We will require several operations on signatures.
Disjoint unions of signatures are defined as follows.

Definition 7.1.4. Given two signatures

Σ1 = 〈S1, TF1, P1〉 and Σ2 = 〈S2, TF2, P2〉

the disjoint union

Σ1 �Σ2 = 〈S1 � S2, TF1 � TF2, P1 � P2〉

where � is the disjoint union for sets, so that, for any symbol t, we have symbols
tl and tr such that tl ∈ Σ1 �Σ2 if, and only if, t ∈ Σ1 and tr ∈ Σ1 �Σ2 if, and
only if, t ∈ Σ2.
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The amalgamated union of signatures is defined using a pushout construc-
tion (following, e.g., [Cen94, pp. 18–21]).

Definition 7.1.5 (Amalgamated unions). Given two signatures,

Σ1 = 〈S1, TF1, P1〉 and Σ2 = 〈S2, TF2, P2〉

that share a (possibly empty) sub-signature Σ = 〈S, TF, P 〉, we define the
disjoint union Σ1 +Σ Σ2 to be the pushout in CSig,

Σ
i1 � Σ1

Σ2

i2

� inr� Σ1 +Σ Σ2

inl

�

where

• i1 and i2 are injections of Σ into Σ1 and Σ2.
• Σ1 +Σ Σ2 is defined as

〈S1/S � S2/S � S, TF1/TF � TF2/TF � TF, P1/P � P2/P � P 〉

where � is the disjoint union for sets. For any symbol t, we have symbols
tl, tr such that tl ∈ Σ1 +Σ Σ2 if, and only if, t ∈ Σ1/Σ, tr ∈ Σ1 +Σ Σ2
whenever t ∈ Σ2/Σ and t ∈ Σ1 +Σ Σ2 whenever t ∈ Σ.

• The pushout morphisms are defined by

inl(t) =
{

t if t ∈ Σ
tl otherwise

inr(t) =
{

t if t ∈ Σ
tr otherwise

To define renaming and hiding operations, we require the following concept.

Definition 7.1.6 (Symbol lists and mappings, [CoF01], section 6.4).
A symbol list is a list of sort, function (and predicate) symbols and a symbol
mapping ρ is a list of maps of the form

SY1 �→ SY ′
1 , ..., SYn �→ SY ′

n

where each SYi and SY ′
i is a sort, function or predicate symbol. SYi �→ SY ′

i

denotes a map that takes the sort or symbol SYi to the sort or symbol SY ′
i ,

respectively. A symbol mapping must not map the same symbol to two different
symbols.

We write ρ−1 for the same symbol mapping with mappings reversed.
A symbol mapping ρ extends to a morphism between signatures,
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ρ̂ : Σ → Σ′

so that, for any sort, function or predicate symbol t of Σ, we define

ρ̂(t) =
{

t′ if t �→ t′ is in ρ
t otherwise

This morphism is well-defined, provided that ρ̂(t) is a symbol of Σ′. It can easily
be seen that if ρ is well-defined, ρ̂−1 is the inverse (ρ̂)−1 of ρ̂. When there is
no ambiguity, we will overload ρ to denote with a symbol mapping ρ and its
associated morphism.

Renaming is an operation on signatures using symbol mappings.

Definition 7.1.7. Given a signature Σ = 〈S, TF, P 〉, and a symbol mapping
ρ, we define the renaming ρ(Σ) to be

〈ρ(S), ρ(TF ), ρ(P )〉

The final important operation on signatures is hiding, defined as follows.

Definition 7.1.8 (Hiding). Let SL be a symbol list consisting of (possibly
empty) sets of sort symbols S0, function symbols TF0 and predicate symbols
P0. Let Σ1 be the associated signature 〈S1, TF1, P1〉.

Then we define Σ1 with SL hidden, written Σ1/SL, to be the signature

〈S1/S0, TF1/TF0, P1/P0〉

7.1.2 Terms and formulae

A signature is associated with sets of well-formed terms formed from free vari-
ables and the function symbols of the signature. These terms are sorted ac-
cording to the sorts of the signature. These terms, in turn, together with the
predicate and sort symbols of the signature, form a set of well-formed formulae
for the signature.

Definition 7.1.9 (Terms of a signature). Let Σ = 〈S, TF, P 〉 be a signature.
Let X be a set that includes an S-sorted set of free variables, disjoint from the
constants in TF (so that X consists of disjoint subsets, Xs, indexed by s ∈ S).

For every sort s ∈ S, the set Term(Σ, X)s of terms of sort s is the least set
containing

1. every x ∈ Xs of sort s and every nullary operation symbol f ∈ TF∅,s, and
2. every f(t1, . . . , tn) where f ∈ TFs1...sn,s is a function symbol in TF with

range s and every ti (i = 1, . . . , n) is a term of sort si in Term(Σ, X)si .

Terms without elements of X are referred to as ground terms and
Term(Σ, ∅)s is denoted by Term(Σ)s.

If t is a Σ-term, then FV (t) denotes the set of free variables in t.



7.1 Specifications 223

A sensible signature has at least one ground term for each sort.

Definition 7.1.10 (Well-formed formulae of a signature). Let Σ =
〈S, TF, P 〉 be a signature.

Let X be a S-sorted set of free variables, disjoint from the constants in TF .
The set of well-formed formulae for a signature, WFF (Σ, X) is the least set

containing

• every P (t1, . . . , tn) where P ∈ Ps1...sn
is a predicate symbol in P and every

ti (i = 1, . . . , n) is a term of sort si in Term(Σ, X)si
,

• every formula (A ∧B), where A, B ∈WFF (Σ, X),
• every formula (A ∨B), where A, B ∈WFF (Σ, X),
• every formula (A⇒ B), where A, B ∈WFF (Σ, X),
• every formula ∀x : s • F , where x ∈ Xs and F ∈WFF (Σ, X),
• every formula ∃x : s • F , where x ∈ Xs and F ∈WFF (Σ, X), and
• the formula ⊥.

We often write ¬A as an abbreviation for A⇒ ⊥.

Definition 7.1.11. We can inductively extend the signature morphism σ :
Σ → Σ′, to a morphism between formulae of WFF (Σ′, X) in the obvious way.
That is, σ(F ) ∈ WFF (Σ′, X) for F ∈ WFF (Σ, X) is obtained by applying σ
to each term and predicate symbol in F .

Assumption 7.1. As in previous parts of this monograph we will always use
terms built over a denumerable set of variables, V ar. We will assume that V ar
is large enough to include S-sorted sets of free variables for any signature’s list
of sorts S.

7.1.3 Structures

As usual, signatures are associated with semantic objects by means of a semantic
interpretation function. Interpreted signatures without predicates are known as
algebras (in universal algebra theory). In our case, where predicate symbols are
used, the resulting interpretations are called structures for signatures.

A Σ-structure has a carrier set for each sort of Σ, a function on those sets
corresponding to each function symbol of Σ, and a subset of tuples of carriers
for each predicate symbol of Σ.

Definition 7.1.12 (Σ-structure). Let M be a Σ-structure. Let wM denote
the Cartesian product sM

1 × . . .× sM
n if w = s1 . . . sn.

For a many-sorted signature Σ = 〈S, TF, P 〉, a Σ-structure M consists of

• non-empty carrier sets sM for each sort s ∈ S,
• a total function fM from wM to sM for each function symbol f ∈ TFw,s,
• a relation PM ⊆ sM

1 × . . . × sM
n for each predicate symbol P ∈ Pw with

w = s1 . . . sn.

We write Struct(Σ) for the set of all Σ-structures.
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A Σ-homomorphism is a map between Σ-structures preserving the opera-
tions interpreting the functions symbols of Σ and the relations interpreting the
predicate symbols of Σ.

A (weak) many-sorted homomorphism h from M1 to M2, with M1, M2 ∈
Struct(Σ), Σ = 〈S, TF, PF, P 〉, consists of a function hs : sM1 → sM2 for each
s ∈ S preserving not only the values of functions but also their definedness, and
preserving the truth of predicates.

Definition 7.1.13 (Reducts, [Wir91, p. 682]). Given a structure M =
Struct(Σ′) and a signature morphism σ : Σ → Σ′, one can recover the Σ =
〈S, TF, P 〉 structure buried inside M — this structure is called the σ-reduct of
M , written M |σ, consisting of

• carrier sets sM |σ = sM for each s ∈ S,
• a total function fM |σ = σ(f)M for each f ∈ TF , and
• a relation AM |σ = σ(A)M for each A ∈ P .

7.1.4 Interpretations of terms

Given a signature, we can define an interpretation map ι from terms of the
signature to a structure for the signature — this map provides a meaning for
the terms.

Definition 7.1.14 (Interpretation). Given a signature Σ, we extend an in-
terpretation map ι from terms Term(Σ, X) to a structure M ∈ Struct(Σ) via
a variable valuation map ι̂ : X →M :

• ι(x) = ι̂(x) for every x ∈ Xs,
• ι(f(t1, . . . , tn)) = fM (ι(t1), . . . , ι(tn))

We call interpretation τ the x-variant of interpretation τ ′ when they differ
only over a particular variable x.

7.1.5 Formula satisfaction

We take the usual approach to defining when a well-formed formula of a signa-
ture is true of a structure for the signature.

Definition 7.1.15 (Satisfaction). Take any signature Σ and a structure M
of Σ (from Struct(Σ)).

For any formula F in WFF (Σ, V ar) and valuation ι̂ : X → M , then M
satisfies F under ι, written

M |=ι F

when

• if F is P (t1, . . . , tn), then (ι(t1), . . . , ι(tn)) ∈ PM

• if F is (A ∧B) then M |=ι A and M |=ι B,
• if F is (A ∨B) then M |=ι A or M |=ι B,
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• if F is (A⇒ B) then, if M |=ι A holds, it must be the case that M |=ι B,
• if F is ∀x : s •Q, where x ∈ Xs, then M |=ι′ Q for every x-variant ι′ of ι,
• if F is ∃x : s •Q, where x ∈ Xs, then M |=ι′ Q for some x-variant ι′ of ι,

We require that M |=ι ⊥ never holds.
If M |=ι F holds for every valuation ι, then we say that M satisfies F and

write M |= F .

spec NatBoolean =
sorts

nat , boolean
ops 0 : nat ; s : nat → nat ; + : nat × nat → nat ,T : boolean,

F : boolean, ge : nat × nat → boolean
preds

≥: nat × nat
axioms

∀x : nat • x + 0 = x
∀x ; y : nat • x + s(y) = s(x + y)
∀x ; y : nat • x + y = y + x
∀x ; y ; v ;w : nat • x ≥ v ∧ y ≥ w ⇒ x + y ≥ v + w∀x : nat • x ≥ 0
∀x : nat • s(x ) ≥ x
∀x ; y : nat • x ≥ y ⇒ ge(x , y) = T

end

Fig. 7.1. A basic specification of the natural numbers and booleans.

7.1.6 Basic specifications

Ultimately we will be building larger specifications of components from smaller
specifications of smaller components. The atomic building blocks of this process
are basic (otherwise called simple or flat) specifications. From a computational
perspective, basic specifications provide a means of defining primitive, unstruc-
tured components for use in defining more complex data types.

For our purposes, we take a basic specification to be as follows.

Definition 7.1.16 (Basic specification). A basic specification is a specifi-
cation of the form

Sp = 〈Σ, Ax〉
where Σ is a signature and Ax is a set axioms for the signature, formulae from
WFF (Σ, V ar).

Assumption 7.2. For the purposes of program extraction, described in Chapter
9, we will assume all axioms are Harrop (given by Definition 6.1.1 of Chapter
2, Part II, p. 33).
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spec StringBool =
sorts

string , bool
ops a : string , b : string , . . . , x : string , y : string , z : string ,A : string ,

B : string , . . . , Z : string , space : string , emptystring : string ,
concat : string × string → string , toUpper : string → string ,
toLower : string → string , true : bool , false : bool ,not : bool → bool ,
or : bool × bool → bool

axioms
∀x : string • concat(emptystring , x ) = x
∀x : string • concat(x , emptystring) = x
∀x ; y : string • toUpper(concat(x , y)) = concat(toUpper(x ), toUpper(y))
∀x ; y : string • toLower(concat(x , y)) = concat(toLpper(x ), toLower(y))
toUpper(a) = A . . . toUpper(z ) = Z
toLower(A) = a . . . toLower(Z ) = z
not(true) = false not(false) = true
or(true, true) = true or(true, false) = true
or(false, true) = true or(false, false) = false

end

We will often use ‘a1 . . . an−1an’ for strings of the form
concat(a1, concat(. . . , concat(an−1, an) . . .)) and write a blank space
for the constant space.

Fig. 7.2. A basic specification of strings and booleans.

Assumption 7.3. We assume that, for each basic specification Sp = 〈Σ, Ax〉,
Σ = 〈S, TF, P 〉 contains a distinguished equality predicate =s∈ Pss for each
s ∈ S.
Remark 7.3. We use equality predicates to define the so-called existential equa-
tions of CASL, of the form

t1 = t2

(we omit the profile subscript in =s when the sorts of the terms are clear).
Intuitively, an existential equation holds in a structure when the interpreted
values of both terms t1 and t2 are defined and identical.2

Assumption 7.4. We assume that, for each basic specification Sp = 〈Σ, Ax〉,
Σ = 〈S, TF, P 〉, there is a distinguished set Conss ⊆ (

⋃
r∈S TFr) for each

s ∈ S, called the set of constructors for s. If Conss �= ∅, we call s a generated
sort.
Remark 7.4. Informally, the constructors of a generated sort form a canonical
representation of every element in the sort. From the perspective of our intended
2 For the sake of simplicity, we do not deal with strong equations, which also hold

when the values of both terms are undefined. Our work could easily be adapted to
include strong equations.
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semantics, when a generated sort is taken as a set of elements, all the elements
of the set always represent terms formed from the sort’s constructors — see our
discussion of loose models for specifications below.

In Chapter 9, we investigate program synthesis from proofs in our logic by
applying the Curry–Howard protocol. For reasons to do with program synthesis,
we will make the convenient (though not essential) assumption that all axioms
of basic specifications are Harrop formulae (see Definition 2.2.1 of Chapter 2 in
Part II).

It is possible to write basic specifications using a more lengthy, human-
readable syntax employed in CASL. For instance, using the longer syntax, the
specification Sp = 〈Σ, Ax〉, Σ = 〈S, TF, P 〉 can be written in standard CASL
notation:

spec Sp =
sorts

SortList
ops

OpList
preds

PredList
axioms

AxiomList
end
where

• SortList is a list of the sorts of S,
• OpList is a list of every operation of TF and their associated sorts, so that,

if t ∈ TFs1...sn,s then

t : s1 × . . .× sn → s ∈ OpList

• PredList is a list of every predicate of P with associated sorts, so that, if
t ∈ Ps1...sn then

P : s1 × . . .× sn ∈ PredList

• Axioms is a list of the axioms Ax

We use this syntax when we wish to clearly present a large specification.
Example 7.1. A basic specification of the natural numbers and booleans is given
in Fig. 7.1. The signature of the specification consists of the sort of natural
numbers, a successor function s, the addition function, and ordering predicate
≥. The first two axioms provide a recursive definition of addition, the third
axiom defines addition to be commutative, and the remaining axioms define
the ≥ predicate as an ordering over the natural numbers. The booleans are
given a simple definition, consisting only of constant symbols for truth and
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falsity. Finally, there is a boolean function over the naturals ge(x, y) that has
the value T when x ≥ y holds.

A basic specification of strings and booleans is given as StringBool in Fig.
7.2. The only predicates used are the implicitly assumed equality predicates for
strings and booleans. The upper and lowercase letters of the alphabet are given
as constant symbols. Function symbols consist of concatenation and changing
the case of a string. In contrast to the specification NatBool of Fig. 7.1,
StringBool contains a more detailed axiomatization of the booleans, with
function symbols for negation and disjunction.

7.1.7 Semantics of basic specifications

The semantics of a basic specification consists of a class of structures that
satisfy the axioms of the specification. We will consider two ways of defining
the semantics — an algebraic and a loose semantics (we take our definitions
from [Wir91, pp. 696–699]).

Algebraic semantics is as follows. Given a basic specification Sp = 〈Σ, Ax〉,
we can associate with it a class of Σ-structures that satisfies all the axioms Ax.
We call this class the (algebraic) models of Sp, Alg(Sp) so

Alg(Sp) = {M ∈ Struct(Σ) |M |= A for every A ∈ Ax} (7.1)

This class of structures denotes the range of possible meanings a specification
may have. For instance, some of these models could be executable programs
that implement the functions defined in the specification.

An algebraic semantics admits nonstandard models — those models in which
models use elements that are not representable by the terms of Sp. The problem
with this semantics is that it includes such “useless,” non-specified elements.
Computationally, this means the models are not precise enough to represent a
concrete definition of the data types used in a program component.

Also, we would like a generated sort to denote a set whose elements are all
represented by terms formed from the constructors for the sort. Because we
have nonstandard models, this is not possible.

To rectify these problems, the loose semantics is defined by the following
restriction on the class of structures used in (7.1). Essentially we constrain
our semantics to models whose elements always correspond to terms of the
specification. Given a basic specification Sp = 〈〈S, TF, P 〉, Ax〉, we associate a
class of reachable Σ-structures that satisfy all the axioms Ax, defined by

Loose(Sp) = {M ∈ Struct(Σ) |M |= A for every A ∈ Ax and, for each
s ∈ S and each a ∈ sM if s is not gener-
ated, then there is a corresponding ground
term t ∈ Term(〈S, TF, P 〉, ∅)s, and if s is
generated, there is a corresponding ground
term formed from the constructors for s, t ∈
Term(〈S, Conss, P 〉, ∅)s}

(7.2)
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Unless otherwise stated, loose semantics will be used here to provide the
intended interpretation of basic specifications used in CASL.

7.2 Structured specifications

In writing large specifications it is desirable to design specifications in a struc-
tural fashion by combining and modifying smaller specifications. This supports
modular decomposition, facilitating a divide-and-conquer approach to defining
system component requirements. This is desirable because a complex system
typically involves many functions and axioms, which become unmanageable
when defined using a simple basic specification.

In CASL a structured specification is formed by combining specifications in
various ways, starting from basic specifications. For instance,

• specifications may be united,
• a specification may be extended with further signature items and/or axioms,
• parts of a signature may be hidden,
• the signature may be translated to use different symbols (with corresponding

translation of the sentences) by a signature morphism, and
• models may be restricted to initial models.

We will now provide an overview of how structured specifications are treated
in the CoFI standard [CoF01]. For the purposes of this and the next two chap-
ters, we will be concerned with the following specification structuring oper-
ations: building unions and extensions, hiding signatures and translations of
symbols. We defer treatment of generic (parametrized) and named specifica-
tions in CASL to Chapter 10.
Example 7.2. We will illustrate our concepts with the following ongoing exam-
ple of a password checking system example, similar to that used throughout
Chapter 2.

The informal domain specification is as follows. We consider a service that
hosts email accounts for a number of users. When a user joins the service, he/she
is required to define a new numerical password. We make the following assump-
tions concerning the password correctness functions for a new user joining or
logging onto the system:

• Password numbers must be 4 digits long (and so within the range of 0000
to 9999).

• If the number chosen is not of the right length, the system should output a
response message, asking the user to select a new number within the correct
range.

• If the number is within the correct range, then the system should output a
response message to this effect.
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We shall model the system within CASL by formally specifying these assump-
tions, defining notions of acceptable lengths of passwords and the correct re-
sponses for given passwords.

7.2.1 Specification expressions

In CASL, we understand structured specifications by means of the collection
CSpec of specification expressions, denoting the range of possible basic and
structured specifications. Later in this section we will introduce the CASL op-
erators to build specification expressions.

We require that every specification expression is associated with two maps,
namely

Sig : CSpec→ CSig

giving the visible signature of the specification, and

Mod : CSpec→ {M ⊆ Struct(Σ) | Σ ∈ CSig}
giving the models of the specification.

7.2.2 Basic specifications

A basic specification
〈Σ, Ax〉

is a specification expression, with

Sig(〈Σ, Ax〉) = Σ

and
Mod(〈Σ, Ax〉) = Loose(〈Σ, Ax〉)

Remark 7.5. Note that we will sometimes consider an algebraic semantics in-
stead of a loose semantics for basic specifications. In this case we will take

Mod(〈Σ, Ax〉) = Alg(〈Σ, Ax〉)
Unless otherwise stated, however, we will employ the loose semantics.

7.2.3 Translation

Syntactically, the translation operation permits us to rename the signature and
axioms of a specification to give a new specification that uses renamed sym-
bols. If we consider a specification as specifying component requirements, the
renamed specification can be considered as a means of wrapping the component
requirements with a new interface.

In CASL, given a specification expression Sp and a symbol mapping ρ, we
will write
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ρ • Sp

for the expression denoting the translation of Sp by ρ.
We define

Sig(ρ • Sp) = ρ(Sig(Sp))

and
Mod(ρ • Sp) = {A|ρ−1 | A ∈Mod(Sp)}

Example 7.3. Consider the basic specifications of Example 7.1. Take the symbol
mapping

BtoB = [boolean �→ Bool, T �→ true, F �→ false]

Then the specification
BtoB •NatBoolean

is NatBoolean of Fig. 7.1 with the booleans now renamed to have the same
sort and constant symbols as those of the specification StringBool in Fig.
7.2. The axioms and functions are appropriately renamed, so that ge is now
a function from Nat ×Nat to Bool, whose behavior is given according to the
renamed axiom:

∀x; y : nat • x ≥ y ⇒ ge(x, y) = T

7.2.4 Union

The union of two specifications is a new specification that retains the mean-
ing of the shared parts of the specifications. In CASL, given two specification
expressions Sp 1 and Sp 2, and a signature Σ such that Σ ⊆ Sig(Sp 1) and
Σ ⊆ Sig(Sp 2), the union

Sp 1 and Sp 2

is a specification expression with

Sig(Sp 1 and Sp 2) = Sig(Sp 1) +Σ Sig(Sp 2)

and

Mod(Sp 1 and Sp 2) = {C ∈Mod(Sig(Sp 1) +Σ Sig(Sp 2)) |
C|inl ∈Mod(Sp 1) and C|inr ∈Mod(Sp 2)}

(The signature morphisms inl and inr are from the pushout construction for
Sig(Sp 1) and Sig(Sp 2) and their common signature — see Definition 7.1.5,
p. 221 above.)
Example 7.4. Consider the union

SNB = (BtoB •NatBoolean) and StringBool

(where BtoB was given in Example 7.3 above). The two sub-specifications
(BtoB •NatBoolean) and StringBool involve a common signature — that
with the boolean sort Bool and true and false constant symbols. Consequently,
by the nature of the pushout construction, the boolean symbols of both the sub-
specifications are interpreted by the same objects in all models of SNB.
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7.2.5 Extension

The extension of a specification is a way of adding additional symbols and
axioms to a specification to extend the specification, whilst retaining the original
meaning.

Extensions are useful when we wish to define new axioms Axext using sym-
bols from a given specification Sp 1 and possibly new symbols Σext. A col-
lection of such new axioms and symbols 〈Σext, Axext〉 constitutes a so-called
partial specification. Such a partial specifications has no models in isolation —
its axioms require symbols from Sp 1 to be interpreted.

For the purposes of this monograph, we will define the meaning of extensions
using unions.

If Sp 1 is a specification and Sp ext = 〈Σext, Axext〉 is a (possibly par-
tial) specification which determines an extension from Sig(Sp 1) to a complete
signature Σ, then the extension

Sp 1 then Sp ext

is a specification expression in CASL. We define this expression to be equivalent
to a union of the form

Sp 1 and Sp 2

where Sp 2 = 〈Σ ∪ Σext, Axext〉, the partial specification Sp ext extended to
include the complete signature Σ. It follows that

Sig(Sp 1) = Σ

and
Mod(Sp 1 then Sp ext) = Mod(Sp 1 and Sp 2)

Remark 7.6. Extensions add nothing that cannot be expressed using unions.
However, they are a convenient, because, if we want to add new information to
a specification, we need not define a full specification to add appropriate new
axioms, as would have to be done in the case of unions.
Example 7.5. We use extensions to specify the password system outlined in
Example 7.2. The specification of the system, PwdCore, is given in Fig. 7.3.

The specification PwdCore extends the naturals, strings and booleans
given by SNB

SNB = (BtoB •NatBoolean) and StringBool

We model aspects of the password checking system by adding new functions
and predicates.

• We define a new boolean function inRange(x) that will output true if the
password number (x) is within the required range (between the natural
numbers 1000 and 9999).
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• A new predicate OkPwd(x) holds over a number, if the number is an ac-
ceptable password (that is, if inRange(x) = true).

• A new predicate V alidMsg(x, y) that holds if a string y is a correct response
message for the input of a password number x.

spec PwdCore = (BtoB • NatBoolean) and StringBool then
ops inRange : nat → Bool
preds

OkPwd : nat ,ValidMsg : nat × String
axioms

∀x : nat • ge(x , 0 ) = true ∧ ge(s9999 (0 ), x ) = true ⇒ inRange(x ) = true
∀x : nat • ge(x , 0 ) = true ∧ ge(s9999 (0 ), x ) = false ⇒ inRange(x ) = false
∀x : nat • ge(x , 0 ) = false ∧ ge(s9999 (0 ), x ) = true ⇒ inRange(x ) = false
∀x : nat • ge(x , 0 ) = false ∧ ge(s9999 (0 ), x ) = false ⇒ inRange(x ) = false
∀x : nat • inRange(x ) = true ⇒ OkPwd(x )
∀x : nat • inRange(x ) = false ⇒ ¬OkPwd(x )
∀x : nat • ∀y : string • OkPwd(x ) ⇒ ValidMsg(x , ‘Password acceptable’)
∀x : nat∀y : string•¬OkPwd(x ) ⇒ ValidMsg(x , ‘Please choose a password in
correct range’)

end

We write si(0) for the successor function applied i times to 0.

Fig. 7.3. Specification of the password checking system.

7.2.6 Hiding

We can hide symbols used by a signature of a specification while retaining the
original meaning. If we consider a specification as a requirement of a component,
hiding is a means of encapsulating functionality. Hiding permits us to expose
only certain important parts of a component interface, but taking other other
parts to be black-box workings of the component.

In CASL, given a specification expression Sp and symbol list SL, Sp hidden
by SL is the specification expression

Sp hide SL

which is
Sig(Sp hide SL) = Σ = Sig(Sp)/SL

and

Mod(Sp hide SL) = {C|σ | C ∈Mod(Sp)
with σ the injection from Σ to Sig(Sp)}
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Example 7.6. We give a final specification of the password checking system
outlined in Example 7.2, by encapsulating some of the functionality exposed by
PwdCore (Example 7.5, Fig. 7.3).

While PwdCore models all the assumptions we require of the the system,
it contains some implementation detail that should be encapsulated. In partic-
ular we hide the functions ge (defined in the sub-specification NatBoolean)
and the function inRange (defined in the extension part of PwdCore). These
functions are closer to implementation detail, because they are concerned with
defining when a password is valid.

The resulting specification is

PwdSys = PwdCore hide {ge, inRange}

When viewed as a component, this specification only exposes the relevant func-
tionality that is related to the validity of the password and axioms defining
correct response messages. The component does not expose details about how
a password is determined to be valid.

7.2.7 Flattening structured specifications

To understand properties of a specification expression, it will sometimes be use-
ful to consider a normal form of the expression, written as a basic specification
with hidden symbols. The normal form can be considered a means of “flatten-
ing” the structure of the specification to a basic specification with some hidden
symbols. The normal form is equivalent to the original specification in that the
signature and set of models are the same.

The following theorem shows that a normal form exists for every specifica-
tion. The proof of the theorem is constructive, showing how to build the normal
form nf(Sp) for an expression Sp.

Theorem 7.2.1. For any specification expression Sp there is a normal form
specification expression of the form

nf(Sp) = 〈Σ, Ax〉 hide SLe

where SLe is some symbol list, such that

Sig(Sp) = Σ/SLe

and
Mod(Sp) = Mod(nf(Sp))

Proof. Given a specification Sp′ such that

Sig(Sp) = Sig(Sp′)

and
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Mod(Sp) = Mod(Sp′)

we write
Sp ∼= nf(Sp)

If Sp is a basic specification, then SLe is empty.
If Sp is Sp 1 and Sp 2, then by the IH, there are symbol lists

SL1
e and SL2

e such that

Sp 1 ∼= nf(Sp 1) = 〈Σ1, Ax1〉 hide SL1
e

Sp 2 ∼= nf(Sp 2) = 〈Σ2, Ax2〉 hide SL2
e

It can be shown that

Sp ∼= nf(Sp 1) and nf(Sp 1)
= 〈Σ1 +Σ Σ2, inl(Ax1) ∪ inr(Ax2)〉 hide SLe

= nf(Sp)

where

• Σ is the signature common to Σ1 and Σ2
• inl and inr are the maps for the pushout of these signatures
• if Σe

1 and Σe
2 are signatures formed from the symbol lists SL1

e and SL2
e, SLe

is the symbol list formed from Σe
1 +Σ Σe

2 .

The proof of this is straightforward, but involved. See [Cen94, pp. 85–86] for
details.

If Sp is Sp 1 then Sp ext, then Sp is semantically equivalent to a union
of the form Sp 1 and Sp 2 where Sp 2 = 〈Σ, Axext〉, where Σ is the extension
of Sig(Sp 1) by Sig(Sp ext). So we can take nf(Sp) to be nf(Sp 1 and Sp 2).

If Sp is Sp 1 hide SL, then, by the IH, there is a symbol list SL1
e such that

Sp 1 ∼= nf(Sp 1) = 〈Σ1, Ax1〉 hide SL1
e

So,
Sp ∼= nf(Sp 1) hide SL

= 〈Σ1, Ax1)〉 hide (SL1
e, SL)

= nf(Sp)

where SL1
e, SL = SLe is the concatenation of SL1

e and SL.
If Sp is ρ • Sp 1, then, by the IH, there is a symbol list SL1

e such that

Sp 1 ∼= nf(Sp 1) = 〈Σ1, Ax1〉 hide SL1
e

Again, following [Cen94, pp. 85–86] it can be shown that there is a ρ′ such that

ρ • (〈Σ1, Ax1〉 hide SL1
e) ∼= 〈ρ′(Σ1), ρ′(Ax1)〉 hide ρ(SL1

e)

which we take to be nf(Sp). ��
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Definition 7.2.2 (Visible symbols and axioms). Given a specification Sp
with normal form

nf(Sp) = 〈Σ, Ax〉 hide SLe

we call the symbols of Σ/SLe the visible sorts, functions, and predicates of Sp.
The subset of axioms Ax that only involve visible sorts, functions and pred-

icates, is called the visible axioms of Sp, written

Axioms(Sp) = {A | A ∈ Ax and A ∈WFF (Σ/SLe, V ar)}

7.3 Reasoning about CASL specifications

Having understood the basic concepts of structured CASL specifications, we
are now ready to define a logical calculus for constructing and reasoning about
these specifications.

In this section, we develop an intuitionistic version of the natural deduction
calculus originally proposed by Wirsing, Peterreins, and Crossley in [WCP98,
Pet96] for reasoning about ASL specifications. We use CASL instead of ASL
as our specification language. We call our calculus the Structured Specification
Logic (SSL). SSL is constructive, extending intuitionistic logic.

This section presents the basic rules of our calculus. Later chapters will
investigate additional rules for SSL. (Specifically, Chapter 9 adds a rule to deal
with adding new extracted functions to specifications, and Chapter 10 adds
rules to develop and reason with parametrized and named specifications from
CASL.)

7.3.1 Judgements

The formal calculus is presented as a natural deduction system.
We deal with judgements, which we write in sequent form as

Γ �SSL Sp �A

where Sp is a CASL specification and A is a formula from WFF (Sig(Sp), V ar).
The context, Γ , is a set of assumption formulae from WFF (Sig(Sp), V ar). The
intended meaning of the judgement is that, assuming Γ are satisfied by the
models of Sp, then A is also satisfied.

Throughout this monograph, when the context is clear, we will abbreviate
�SSL by �.

As usual, we employ a sequent style presentation of natural deduction, but
switch to a proof-tree notation when convenient.
Remark 7.7. We have modified the syntax for judgements from that used in
the papers [CPW00] and [PCW02]. There, the specification label appeared as
a subscript of the turnstile, so that judgements were written as
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Γ �Sp �A

We use the new notation to draw the analogy with our treatment of Hoare logic
in Part III. As we will see in the next chapter where we define a logical type
theory for our logic, we can take labelled formulae as types, in a similar fashion
to our treatment of the logical type theory for IHL given in Chapter 5 of Part
III.

7.3.2 Logical rules

The basic rules for SSL are of two kinds: logical and structural.
The logical rules of SSL are shown in Fig. 7.4. These rules are essentially

the standard rules for many-sorted intuitionistic logic, but with specification
labels. Intuitively, a logical rule enables us to do constructive reasoning about
the properties of a single specification.

For example, we augment the usual (⇒-I) rule of constructive logic as fol-
lows:

Γ, A � Sp �B

Γ � Sp � (A⇒ B)
(⇒-I)

This rule permits us to prove that the implication (A⇒ B) satisfies the speci-
fication Sp, given a proof that, assuming A, then B is satisfiable for Sp.

The conditions of application for the logical rules are similar to those of
intuitionistic logic presented in Chapter 2.
Remark 7.8 (Substitution for individual variables). As usual A[t/x] denotes the
result of substituting t for all free occurrences of x in A, subject to avoiding
clashes of variables, where t and x share the same sort.

We illustrate the motivation of our calculus by considering several rules.
The other rules can be understood similarly.
Remark 7.9. Axiom and assumption introduction rules deserve some discussion.
These rules allow formulae to be proved about a specification, using the specifi-
cation axioms and assumptions about the specification. The axiom introduction
rule (Ax-I) permits the use the axioms of a basic specification. Assumption in-
troduction (Ass-I) enables assumptions to be made about a specification, using
visible symbols of the specification’s signature.
Remark 7.10. The rule (∨-I1)

Γ � Sp �A
Γ � Sp � (A ∨B)

(∨-I1)

means that, we know (A∨B) is true of Sp because we know A is true of Sp. This
is an important principle of constructive systems — a disjunction is known only
if the left or right formula of the disjunction is known. Motivation for (∨-I2) is
similar.
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Take any structured specification expression Sp. Let t be a term of
Term(Sig(Sp), X)s with a sort, s, of Sig(Sp).

A � Sp � A
(Ass-I) ∅ � 〈Σ, Ax〉 � A

(Ax-I)

where Sig(A) ⊆ Sig(Sp) where A ∈ Ax

Γ, A � Sp � B

Γ � Sp � (A ⇒ B)
(⇒-I)

Γ1 � Sp � (A ⇒ B) Γ2 � Sp � A

Γ1, Γ2 � Sp � B
(⇒-E)

Γ1 � Sp � A Γ2 � Sp � B

Γ1, Γ2 � Sp � A ∧ B
(∧-I)

Γ � Sp � (A1 ∧ A2)
Γ � Sp � A1

(∧-E1)
Γ � Sp � (A1 ∧ A2)

Γ � Sp � A2
(∧-E2)

Γ � Sp � A
Γ � Sp � (A ∨ B)

(∨-I1)
Γ � Sp � B

Γ � Sp � (A ∨ B)
(∨-I2)

Γ � Sp � (A ∨ B) Γ1, A � Sp � C Γ2, B � Sp � C

Γ, Γ1, Γ2 � Sp � C
(∨-E)

Γ � Sp � A
Γ � Sp � ∀x : s • A

(∀-I) Γ � Sp � ∀x : s • A
Γ � Sp � A[t/x]

(∀-E)

where x is free in A, not free in Γ

Γ � Sp � A[t/x]
Γ � Sp � ∃x : s • A

(∃-I)

Γ1 � Sp � ∃x : s • A Γ2, A[z/x] � Sp � C

Γ1, Γ2 � Sp � C
(∃-E)

where z does not occur free in C

Γ � Sp� ⊥
Γ � Sp � A

(⊥-E)

provided A is Harrop

Fig. 7.4. The logical rules of SSL.

Remark 7.11. As was the case for intuitionistic logic, the premise formula of
(⊥-E) is restricted to Harrop formulae. This restriction, though not necessary,
aids program extraction, investigated in Chapter 9. The restriction does not
affect the power of our logical rules. That is, we can conservatively extend our
calculus with a rule of the form

Γ �Int Sp� ⊥
Γ � Sp �A

(⊥-E∗)

for all formulae A. This rule is derivable from (⊥-E) by a similar proof to that
of Lemma 2.2.1 in Chapter 2, Part II, p. 33.
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Remark 7.12. Our presentation of the logical rules follows that given in [CPW00].
However, we have restricted logical rules to use the same specification in
premises and conclusion. This does not affect the logical strength of the system
as the structural rules, given below, allow us to derive all the rules in [CPW00]
in our present system.

7.3.3 Structural rules

The structural rules of SSL are given in Fig. 7.5. These rules allow us to si-
multaneously build a structured specification and prove properties about the
result, given previously known properties about smaller specifications.

For instance, the translation rule (trans)

Γ � Sp �A
ρ‘Γ � Sp with ρ � ρ • (A)

(trans)

permits us to simultaneously

• rename a specification Sp to Sp with ρ, and
• transform a known property A of the specification to a new property ρ • A

of the renamed specification.

Remark 7.13. Observe that, for the logical rules, the specification in the conclu-
sion is the same as that in the premises. On the other hand, for the structural
rules, the change in structure is reflected in the new specification label of the
conclusion.

Γ � Sp � A
ρ‘Γ � Sp with ρ � ρ • (A)

(trans)

Γ � Sp � A
Γ � Sp hide SL � A

(hide)

where Γ ∪ {A} ⊆ WFF (Sig(Sp)/SL, V ar)

Γ � Sp 1 � A
Γ � Sp 1 and Sp 2 � inl(A)

(union1)

Γ � Sp 2 � A
Γ � Sp 1 and Sp 2 � inr(A)

(union2)

Γ � Sp 1 � A
Γ � Sp 1 then Sp ext � inl(A)

(ext1)

Γ � Sp ext � A
Γ � Sp 1 then Sp ext � inr(A)

(ext2)

Fig. 7.5. The structural rules of SSL.
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Remark 7.14. We make the following remarks about the structural rules of Fig.
7.5:

• Given a formula F and symbol translation ρ, then ρ(F ) denotes the obvious
translation of F by replacing function symbols according to ρ.

• The translation of the context Γ by ρ is written ρ‘Γ . This is simply the
recursive application of ρ to every formula in Γ to obtain a result context
Γ ′ = ρ‘Γ .

• The morphisms inl : Sig(Sp 1) → Sig(Sp 1) +Σ Sig(Sp 2) and
inr : Sig(Sp 2) → Sig(Sp 1) +Σ Sig(Sp 2) in (union1) and (union2) are
the pushout morphisms over common signature Σ, as defined in Definition
7.1.5.

• The morphisms inl : Sig(Sp 1) → Sig(Sp 1) +Σ Sig(Sp 2) and inr :
Sig(Sp 2) → Sig(Sp 1) +Σ Sig(Sp 2) in (ext1) and (ext2) are pushout
morphisms over the common signature Σ = Sig(Sp 1), where Sp 2 =
〈Sig(Sp 1) ∪ Σe, Axe〉 is formed by extending the signature of Sp ext =
〈Σe, Axe〉.

Remark 7.15. Our presentation of the structural rules follows that of [CPW00]
but with the additional rules for extensions that were given in [PCW02].
Remark 7.16 (Standard representation of unions). In later chapters, following
[Pet96, WCP98, CPW00, PCW02], we will use Sig(SP 1)∪Sig(Sp 2) as stan-
dard representation of the isomorphism class of Sig(Sp 1 and Sp 2). This
simplifies the presentation of the (unioni), (exti) (i = 1, 2), since we do not
have to write the embedding morphisms inl and inr explicitly.

However, in this present chapter, we will use the full pushout construction
for

Sig(Sp 1 and Sp 2)

as given in 7.2.4, Section 7.2, p. 231.

7.3.4 Reasoning with equality

CASL makes the following assumptions to aid reasoning about equality between
terms. Every signature contains an equality predicate =s for each sort s of the
signature, and also the following sets of axioms are in every basic specification
〈Σ, Ax〉, Σ = 〈S, TF, P 〉:
1. Reflexivity: for every s ∈ S,

∀x : s • x =s x

2. Symmetry: for every s ∈ S,

∀x, y : s • x =s y ⇒ y =s z
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3. Transitivity: for every s ∈ S,

∀x, y, z : s • x =s y ∧ y =s z ⇒ x =s z

4. Substitutivity for terms: for every s1, . . . , sn, s ∈ S and every term t ∈
TFs1...sn,s,

∀a1, b1 : s1 • . . . an, bn : sn • (a1 = b1 ∧ . . . ∧ an = bn)⇒
f(a1, . . . , an) = f(b1, . . . , bn)

5. Substitutivity in predicates: for every s1, . . . , sn ∈ S and every predicate
F ∈ Ps1...sn

,

∀a1, b1 : s1 • . . . an, bn : sn • (a1 = b1 ∧ . . . ∧ an = bn)⇒
F (a1, . . . , an)⇒ F (b1, . . . , bn)

In CASL, these axioms are presumed implicit in basic specifications — they do
not need to be given by the specification writer.

These assumptions permit us to take the following as a convenient derivable
schema, for any specification expression Sp:

Γ1 � Sp � x1 =s y1 . . . Γn � Sp � xn =s yn

Γ1, . . . , Γn � Sp � (P [x/z]⇒ P [y/z])
(subst[P ])

(7.3)

for s ∈ Sig(Sp) and P ∈WFF (Sig(Sp), V ar).
To see why (7.3) is a derivable schema, we require Lemmata 7.3.1 and 7.3.2

below.

Lemma 7.3.1. For any specification Sp, for every a : s2 ∈ Term(Sig(Sp))

� Sp � ∀x, y : s1 • ∀x =s1 y ⇒ a[x/z] =s2 a[y/z]

where formula P is a formula in WFF (Sig(Sp)).

Proof. We use the axioms of substitutivity for basic specifications.
By induction on the forms of a and of Sp. Suppose

� Sp � x =s1 y (7.4)

Assume Sp is basic.
Either z is free in a or not. If the latter holds, then we are done. If the

former, then a is of two forms: either
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• a is f(a1, . . . , an), and z is only free in the subset {a′
1 : s′

1, . . . , a
′
m : s′

m} of
{a1, . . . , an}. By the IH, it is possible to prove

� Sp � a′
1[x/z] =s′

1
a′
1[y/z]

. . .

� Sp � a′
m[x/z] =s′

m
a′

m[y/z]

Then, by the assumed axioms for substitutivity of terms,

� Sp � f(a1, . . . , an)[x/z] = f(a1, . . . , an)[y/z]

is provable
• a is a variable z. In this case, we are done, because we have assumed (7.4).

If Sp is a structured specification expression, we prove

� Sp 2 � ∀x, y : s1 • x =s1 y ⇒ a[x/z] =s2 a[y/z]

for the sub-specification Sp 2 of Sp whose signature includes s1, s2 as sorts and
a as a term. Then we use the structural rules to construct Sp. For example, if
Sp is of the form ρ • Sp 2, then, by the IH, it is possible to derive

� Sp 2 � ρ−1(∀x, y : s1 • ∀x =s1 y ⇒ a[x/z] =s2 a[y/z])

We then apply the rule (trans) to obtain the required conclusion by translation.
��

Lemma 7.3.2. For any specification Sp, for sort s ∈ Sig(Sp)

� Sp � ∀x, y : s • x =s y ⇒ (P [x/z]⇒ P [y/z])

for any formula P ∈WFF (Sig(Sp)).

Proof. We use the assumed axioms of substitutivity, proceeding by induction
on the forms of P and of Sp. Suppose

� Sp � x =s y

If P is atomic, of the form F (a1, . . . , an), then either z is free in F or not. If
the latter, then we are done. If the former, then z is free only in some non-empty
subset {a′

1 : s1, . . . a
′
m : sm} of {a1, . . . , an}. By Lemma (7.3.1), it is possible to

prove
� a′

1[x/z] =s1 a′
1[x/z]

. . .

� a′
m[x/z] =sm a′

m[x/z]

Using the basic specification axioms of substitutivity of predicates, we have
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� Sp � F (a1, . . . , an)[x/z]⇒ F (a1, . . . , an)[y/z]

as required.
Otherwise we proceed over the structure of P .
If Sp is a structured specification expression, we prove

� Sp 2 � ∀x, y : s • x =s y ⇒ (P [x/z]⇒ P [y/z])

for the smallest sub-specification Sp 2 of Sp whose signature includes s1, s2 as
sorts and a as a term, and we then use the structural rules to construct Sp in
the same way as with the proof of Lemma 7.3.1. ��

Repeated application of the last lemma is enough to derive any application
of the schema (7.3).

7.3.5 Induction

To reason inductively over generated sorts, we include structural induction
schemata.

Recall, in Chapter 2 (p. 34), we dealt with specific cases of induction
schemata for many-sorted intuitionistic logic. In the case of SSL, we will go
further and provide a general induction schemata for any generated sort of any
basic specification.

Given a sort in a signature Σ = 〈S, F, P 〉, generated by constructors
Conss ⊆ Fs, we permit an induction schema of the form given in Fig. 7.6.

The general form of this schema is complicated. It is best illustrated by
examples.
Example 7.7. Consider the specification NatBoolean of Example 7.1, Fig.
7.1, in which the booleans boolean are generated by constants

{F : boolean, T : boolean}

The corresponding induction schema Ind(boolean) produced by the general
schema of Fig. 7.6 is

NatBoolean � P [F/x] NatBoolean � P [T/x]
NatBoolean � ∀x : boolean • P

(Ind[boolean])

Example 7.8. Given a signature Σ in which the natural numbers nat are gen-
erated by

Consnat = {0 : nat, suc : nat→ nat}
The induction schema (Ind[nat]), a special case of Fig. 7.6, is

〈Σ, Ax〉 � P [0/x] 〈Σ, Ax〉 � ∀y : nat • P [y/x]⇒ P [suc(y)/x]
〈Σ, Ax〉 � ∀x : nat • P

(Ind[nat])
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Let Σ = 〈S, F, P 〉 be a signature that contains a sort s generated by
constructors Conss ⊆ Fs,

Conss = {c1 : s, . . . , cn : s, f1 : (s1
1 × . . . × s1

m1) → s, . . . ,

fp : (sp
1 × . . . × sp

mp
) → s}

Let P be a formula of Σ with x : s free.
For each i = 1, . . . , p we make the following definitions. Take a set of
variables {xi

j}j=1,...,mi corresponding to argument sorts of fi, we define

M(s, {xi
j : si

j}j=1,...,mi) = {xi
j | si

j = s}
(When this set is empty, then fi does not involve s as an argument
sort.)
If this set is empty, then we define

Pfi = ∀xi
1 : si

1, . . . , x
i
mi

: si
mi

• P [fi(x1
1, . . . , x

m
mi

)/x]

Otherwise, we take

Pfi = ∀xi
1 : si

1, . . . , x
i
mi

: si
mi

• Qfi ⇒ P [fi(xi
1, . . . , x

i
mi

)/x]

where Qfi is formed from M(s, {xi
j : si

j}j=1,...,mi) as follows. Assume
M(s, {xi

j : si
j}j=1,...,mi) = {x1, . . . , xk}. If k = 1,

Qfi = P (x1)

If k > 1,
Qfi = P (x1) ⇒ . . . ⇒ P (xk)

Then we have the following induction schema for s in Σ:

� 〈Σ, Ax〉 � Pc1 . . . � 〈Σ, Ax〉 � Pcn

� 〈Σ, Ax〉 � Pf1 . . . � 〈Σ, Ax〉 � Pfp

� 〈Σ, Ax〉 � ∀x : s • P
(Ind[s])

Fig. 7.6. General structural induction schema.

Example 7.9. Given a signature Σ in which lists of natural numbers lnat are
generated by

Conslnat = {l : nat→ lnat, con : (lnat× lnat)→ lnat}
The induction schema (Ind[lnat]), a special case of Fig. 7.6, is

〈Σ, Ax〉 � ∀y : nat • P [l(y)/x]
〈Σ, Ax〉 � ∀y : lnat • ∀z : lnat • P [y/x] ⇒ P [z/x] ⇒ P [con(y, z)/x]

〈Σ, Ax〉 � ∀x : nat • P
(Ind[lnat])
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7.3.6 Example: Password checking system

We will now illustrate SSL in practice. We use the calculus to simultaneously
reason about and to construct specifications, developing a theorem about the
password checking system PwdSys described throughout Section 7.2.

We will prove that, given any input x of a password, there is always an
appropriate response message to be output. The response message will tell the
user if the password is of the correct length or not. This requirement is stated
as follows

� PwdSys � ∀x : nat • ∃y : string • V alidMsg(x, r) (7.5)

We now derive (7.5).
First we need to prove the following lemma using boolean induction over

NatBoolean (this induction schema was defined in Example 7.7 above):

NatBoolean � F = F
(Ax)

NatBoolean � T = T ∨ F = F
(∨-I2)

NatBoolean � T = T
(Ax)

NatBoolean � T = T ∨ T = F
(∨-I1)

NatBoolean � ∀b : boolean • b = T ∨ b = F
(7.6)

where with the conclusion obtained by Ind(Boolean) and where the axioms are
from the assumed axioms of equality.

We wish to use (7.6) to show that the value inRange(x) of PwdCore will
always be either true or false for any input password x.

In order to use (7.6) in PwdCore, we must employ structural rules to
build PwdCore from NatBoolean. The function inRange is defined with
boolean sort symbols of PwdCore, which are renamed versions of those in
NatBoolean. So we proceed by renaming boolean symbols of NatBoolean
to their appropriate counterparts used by inRange, taking a union with
StringBoolean and then extending the new symbols and axioms of PwdCore
as follows

.... (7.6)
NatBoolean � ∀b : boolean • b = T ∨ b = F

(BtoB •NatBoolean) � ∀b : bool • b = true ∨ b = false
(trans)

SNB � ∀b : bool • b = true ∨ b = false
(union1)

PwdCore � ∀b : bool • b = true ∨ b = false
(ext1) (7.7)

where SNB = (BtoB • NatBoolean) and StringBool and BtoB is the
symbol mapping [boolean �→ bool, T �→ true, F �→ false].

Then we can instantiate (7.7) with inRange(x) for b, by application of (∀-E),
to give

PwdCore � inRange(x) = true ∨ inRange(x) = false (7.8)
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We will derive (7.5) by reasoning over the possible cases that PwdCore �
inRange(x) = true or PwdCore � inRange(x) = false.

First we consider the former case, PwdCore � inRange(x) = true.

We apply (∀-E) on two axioms of PwdCore, to remove the quantifiers:

PwdCore � ∀x : nat • inRange(x) = true⇒ OkPwd(x)
(Ax-I)

PwdCore � inRange(x) = true⇒ OkPwd(x)
(∀-E)

(7.9)

and

PwdCore � ∀x : nat •OkPwd(x)⇒
V alidMsg(x, ‘Password acceptable’)

(Ax-I)

PwdCore �OkPwd(x)⇒ V alidMsg(x, ‘Password acceptable’)
(∀-E)

(7.10)

We use these axioms and the assumption to derive (7.5):

(7.10)
PwdCore � A2

(7.9)
PwdCore � A1 PwdCore � inRange(x) = true

(Ass-I)

PwdCore � OkPwd(x)
(⇒-E)

PwdCore � V alidMsg(x, ‘Password acceptable’)
(⇒-E)

PwdCore � ∃y : string • V alidMsg(x, y)
(∃-I)

PwdCore � ∀x : nat • ∃y : string • V alidMsg(x, y)
(∀-I)

(7.11)

where A1 denotes the formula inRange(x) = true ⇒ OkPwd(x) in the
instantiated axiom of (7.9) and A2 denotes the formula OkPwd(x) ⇒
V alidMsg(x, ‘Password acceptable’) in the instantiated axiom of (7.10).

Similar reasoning from the assumption PwdCore � inRange(x) = false,
using the axioms of PwdCore will give a proof of the form

PwdCore � inRange(x) = false
(Ass-I)

....
PwdCore � V alidMsg(x, ‘Please choose a password in correct range’)

PwdCore � ∃y : string • V alidMsg(x, y)
(∃-I)

PwdCore � ∀x : nat • ∃y : string • V alidMsg(x, y)
(∀-I)

(7.12)
We apply (∨-E) using (7.8), (7.11) and (7.12), to obtain

PwdCore � ∀x : nat • ∃y : string • V alidMsg(x, y)

This proves the formula of the required theorem, but over the system specifi-
cation prior to encapsulation, PwdCore.

By hiding {ge, inRange} in the result, we obtain the theorem (7.5) as re-
quired:
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....
PwdCore � ∀x : nat • ∃y : string • V alidMsg(x, y)
PwdSys � ∀x : nat • ∃y : string • V alidMsg(x, y)

(hide)

This theorem is a truth about the specification PwdSys, given known prop-
erties about its required behavior. It tells us that there is always a correct
response message for a given password number.

To build an implementation of the password checking system, it would be
useful to find a function for producing such a message for given passwords.
In isolation the theorem does not tell us what this function is. However, by
utilizing the Curry–Howard protocol to adapt proofs-as-programs to SSL, it is
possible to extract such a function from the proof of the theorem. As we develop
such a methodology in the next two chapters, we shall return to this example
to illustrate our ideas.

In Chapter 8 we will define a logical type theory for representing proofs in
SSL. We will show how the proof of this example can be encoded as a term in
the type theory (see Section 3.2.1, p. 260).

In Chapter 9 we will use the Curry–Howard protocol to provide a method
for extracting correct programs from proofs in SSL. We will show how the proof
of theorem (7.5) can be transformed into a password checking function which
outputs an appropriate response for a given password number input. Then we
will also show how this function can be used to build a consistent extension of
PwdSys (Section 9.4, p. 334).

7.4 Soundness

In this section, we outline soundness proofs for SSL, using the semantics of
specification expressions and definition of formula satisfaction.

We require the following notion of validity for sequents in SSL.

Definition 7.4.1. Take any specification Sp.
Let Γ = {G1, . . . , Gn} and F be WFF (Sig(Sp), V ar) formulae.
We write

Sp, Γ |= F

if, for every M ∈Mod(Sp), and every interpretation ι̂ : V ar →M , assuming

M |=ι Gi

for each i = 1, . . . , n then
M |=ι F

In this case we say that F is valid for Sp, assuming Γ .
If Γ is empty and

Sp |= F

then we say the formula F is valid for the specification.
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Soundness is an important result: it tells us that if Sp � P can be proved,
then P is a valid statement for Sp.

Theorem 7.4.2 (Soundness). Given an SSL proof

Γ � Sp � F

Then
Sp, Γ |= F

Proof. We are required to prove that, if, for every M ∈Mod(Sp), and valuation
ι̂ : V ar →M , M |=ι Gi (each Gi ∈ Γ ), then M |=ι F .

We show this by induction on the length of the proof.
Take any M ∈Mod(Sp) and valuation ι̂ : X →M and assume

M |=ι Gi (7.13)

for every Gi ∈ Γ .
Logical rules. If the proof ends in the application of a logical rule, then

the approach is straightforward. We obtain the required conclusion using the
definition of satisfaction (Definition 7.1.15, p. 224).

(Ass-I). If the proof is of the form

∅ � 〈Σ, Ax〉 �A
(Ax-I)

then M |=ι A by definition of Mod(〈Σ, Ax〉) and the fact that A ∈ Ax, and we
are done.

(Ass-I). If the proof is of the form

Sig(A) ⊆ Sig(Sp)
A � Sp �A

(Ass-I)

Then Γ = {A} and we have M |=ι A by assumption (7.13).
(⇒-I). Assume the proof ends in a rule application of the form

Γ, A � Sp �B

Γ � Sp � (A⇒ B)
(⇒-I)

The IH and assumption (7.13) dilate that, if M |=ι A then M |=ι B. Then, by
definition of satisfaction, we know A⇒ B, as required.

(⇒-E). Assume the proof ends in a rule application of the form

Γ1 � Sp �A⇒ B Γ2 � Sp �A

Γ1, Γ2 � Sp �B
(⇒-E)

Then the IH assumption (7.13) dictate that M |=ι A ⇒ B and M |=ι A. By
definition of satisfaction for A⇒ B, we know that M |=ι B as required.
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The cases of proofs ending in (∧-I), (∧1-E), (∧2-E), (∨1-I), (∨2-I), (∨-E)
and (⊥-E) are similar.

(∀-I). Assume the proof ends in a rule application of the form

Γ � Sp �A
Γ � Sp � ∀x : s •A

(∀-I)

Take any x : s-variant ι′ of ι. By assumption (7.13), and the fact that x : T �∈
FV (Γ ), it is easy to derive

M |=ι′ Gi (7.14)

for each Gi ∈ Γ . So, by the IH, M |=ι′ A for every x : T -variant ι′ of ι, as
required.

The case of a proof ending in (∃-I) is similar.
(∀-E). Assume the proof ends in a rule application of the form

Γ � Sp � ∀x : s •A
Γ � Sp �A[t/x]

(∀-E)

By assumption (7.13), M |=ι ∀x : s • A. So, M |=ι′ A for the ι′ variant that
maps x to ι(t). It is then easy to derive M |=ι A[t/x] as required.

The case of a proof ending in (∃-E) is similar.
Structural rules. We follow [Cen94, p. 88], using the definition of Mod over

structured specification expressions.
(union1). Assume the proof ends in rule application

Γ � Sp 1 �A
Γ � Sp 1 and Sp 2 � inl(A)

(union1)

By the IH, N |= A for any N ∈Mod(Sp 1). Now, M ∈Mod(Sp 1 and Sp 2).
By definition of Mod, M |inl ∈ Mod(SpecNameSp1). So, M |= inl(A), as re-
quired.

(union2). This case is symmetric.
(ext1). Assume the proof ends in rule application

Γ � Sp 1 �A
Γ � Sp 1 then Sp ext � inl(A)

(ext1)

where Sp ext = 〈Σ, Ax〉. Let Σ be the Sig(Sp 1 then Sp ext). By the IH,
N |= A for any N ∈ Mod(Sp 1). Now, M ∈ Mod(Sp 1 & Sp 2) for Sp 2 =
〈Σ, Ax. By definition of Mod, M |inl ∈ Mod(SpecNameSp1). So, M |= inl(A)
as required.

(ext2). This case is symmetric.
The cases of (hide) and (trans) are trivial.
Induction schemata. Assume that a proof ends in an induction schema:

� 〈Σ, Ax〉 � P [c1/x] . . . � 〈Σ, Ax〉 � P [cn/x]
� 〈Σ, Ax〉 � Pf1 . . . � 〈Σ, Ax〉 � Pfp

� 〈Σ, Ax〉 � ∀x : s • P
Ind(s)

where
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• 〈Σ, Ax〉 is a basic specification with Σ = 〈S, TF, P 〉 with constructors
Conss ⊆ TF for a sort s ∈ S,

Conss = {c1 : s, . . . , cn : s, f1 : (s1
1 × . . . s1

m1
)→ s, . . . ,

fp : (sp
1 × . . . sp

mp
)→ s}

• where each Pfi is defined as in Fig. 7.6 (p. 244).

We are required to show that, for every M ∈ Mod(〈Σ, Ax〉) (using loose
semantics), for every interpretation ι̂ : V ar →M

M |=ι′ P (7.15)

for every x-variant ι′ of ι.
We establish 7.15 by a second induction over the form of a = ι′(x) ∈ sM .
Because we use loose semantics and s has constructors, we know that a must

be of the following forms

• a = cM
i for some i = 1, . . . , n. In this case, by the main IH, M |=ι P [ci/x]

and so (7.15) holds.
• a = fM

i ((ai
1)

M , . . . , (ai
mi

)M ) for some i = 1, . . . , m, with each (ai
j)

M ∈ (si
j)

M

(j = 1, . . . , mi)
First, let M(s, {xi

j : si
j}j=1,...,mi

) be defined as in Fig. 7.6 (p. 244):

M(s, {xi
j : si

j}j=1,...,mi
) = {xi

j : si
j | si

j = s for ji = 1i, . . . , mi} =

{x1 : s, . . . , xk : s}
We deal with the more complicated case where M(s, {xi

j : si
j}j=1,...,mi

) is
not empty and k > 1. The other cases (where the set is empty or when
k = 1) are similar.
We have a set of terms corresponding to M(s, {xi

j : si
j}j=1,...,mi)

M(s, {ai
j : si

j}j=1,...,mi) = {ai
j : si

j | si
j = s for ji = 1i, . . . , mi} =

{a1 : s, . . . , ak : s}
By the second IH, for each j = 1, . . . , k it is true that M |=ιj P for the
x-variant ιj of ι defined ιj = ι[x �→ (aj)M ]. But this means

M |=ι P [aj/x] (7.16)

Now,

Pfi = ∀xi
1 : si

1, . . . , x
i
mi

: si
mi
•Qfi ⇒ P [fi(xi

1, . . . , x
i
mi

)/x]

where Qfi is
Qfi = P [x1/x]⇒ . . .⇒ P [xk/x]
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By the main IH,

M |=ι ∀xi
1 : si

1, . . . x
i
m : si

m •Qfi ⇒ P [fi(xi
1, . . . , x

i
m)/x]

By repeated instantiation, this means

M |=ι Q′
fi
⇒ P [fi(a1i

, . . . , ami
)/x]

with
Q′

fi
= P [a1/x]⇒ . . .⇒ P [ak/x]

So we can repeatedly instantiate Q′ with (7.16) j = 1, . . . , k to obtain

M |=ι P [fi(a1i
, . . . , ami

)/x]

This gives us (7.15) as required.
��

Remark 7.17. We omit the opposite direction — completeness. Completeness
is not as important a property as soundness for the purposes of program ex-
traction.

The proof of completeness would follow along the lines given by Cengarle
in [Cen94, pp. 89–91], but would require constructive models for specifications
(e.g., Kripke semantics), due to the constructive nature of our logical rules.

Also, as noted by Cengarle, the completeness theorem does not hold for the
case where we use loose semantics and where Sp involves basic sub-specifications
with constructors for sorts. This is because the model classes for such sub-
specifications are computation structures, which, by Gödel’s Incompleteness
Theorem, do not have complete formal systems. Note that only these sub-
specifications permit reasoning with structural induction schemata. Thus, our
logic with schemata is sound with respect to our loose semantics, but not com-
plete.

7.5 Discussion

This chapter presented the important concepts of structured specifications in
CASL and defined the logic SSL. The next two chapters will be concerned with
application of the Curry–Howard protocol to SSL.

In Chapter 8 we will define a logical type theory for SSL for which the Curry–
Howard isomorphism holds. Then, in Chapter 9, we will show how to transform
SSL proofs into provably correct functional programs, which may then be used
to consistently extend structured specifications.

The logic SSL is extensible. Later in this part of the monograph, we will
propose various extensions to the basic SSL. In Chapter 9, we shall extend the
language of CASL and our logic to specify with and reason about a lambda
calculus of the SML programming language. This is necessary for us to use the
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Curry–Howard protocol to extract lambda terms from proofs of SSL and to
obtain executable refinements of CASL specifications.

The current chapter has not dealt with generic (parametrized) specifications.
Chapter 10 extends SSL to the generic specifications of CASL.

The final chapter of this part of the monograph, Chapter 11, will examine
how our calculus and the synthesis results can be applied to give methods for
structured program synthesis.



8

Proof-theoretic Properties of SSL

According to the Curry–Howard isomorphism, ordinary intuitionistic logic cor-
responds to a logical type theory. Intuitionistic proofs correspond to terms,
formulae to types and the logical rules to type inference rules of the theory. In
Chapter 3 of Part II, we defined the Curry–Howard protocol as a framework
for generalizing proofs-as-programs to new logics and programming paradigms.
Integral to that framework is the identification of a type theory for the tar-
get logic so that there is a correspondence in the style of the Curry–Howard
isomorphism.

We want to apply the Curry–Howard protocol to synthesize correct functions
from proofs about CASL specifications. To achieve this objective, we must first
investigate a similar version of the Curry–Howard isomorphism between SSL
and an associated logical type theory LTT (SSL). Then, in the next chapter
(Chapter 9), we will use LTT (SSL) to achieve the ultimate goal of adapting
proofs-as-programs to SSL.

Our logical type theory is a kind of lambda calculus. Its distinguishing fea-
ture is that the types are specification/formula pairs (similar to the logical
type theory for Hoare logic of Chapter 5 in Part III, where types were pro-
gram/formulae pairs). As in the case of the type theory for intuitionistic logic
there is an associated normalizing relation. This relation corresponds to a proof
normalization strategy for simplifying proofs by eliminating redundant appli-
cation of rules. Owing to the presence of structural rules, we need to consider
a more complex normalization strategy than that used by intuitionistic logic.
We will derive two important proof-theoretic properties with respect to this
reduction relation: the Church–Rosser property and strong normalization.

We proceed as follows:

• Section 8.1 defines a logical type theory for our calculus and explains how
the Curry–Howard isomorphism holds for this new context.

• Section 8.2 identifies rules for proof normalization and proves the strong
normalization theorem (Theorem 8.2.9).
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• Section 8.3 derives the Church–Rosser property for our proof-terms (Theo-
rem 8.3.3).

• Finally, in Section 8.4, we provide a discussion of our results.

In Part III we applied the Curry–Howard protocol to the synthesis of imper-
ative programs with return values. Part of that work involved defining a similar
adaptation of the Curry–Howard isomorphism to the Hoare logic and an asso-
ciated type theory (Chapter 5). This chapter provides a second example of how
the isomorphism can be adapted for use with an application of the protocol.

a, b, c ::= Proof-terms, PT (SSL), of LTT (SSL)
ass(Sp, uF ) assumption, where F is a formula, Sp is a spec-

ification expression , u is in V arPT (SSL)

ax(〈Σ, Ax〉, F ) axiom, where F is a formula, 〈Σ, Ax〉 is a basic
specification expression

rec(Conss, s, p) structural induction, where Conss is a list of
constructors for sort s and p is a list of proof-
terms.

abstract uF . a abstraction, u from V arPT (SSL), F a formula
app(a, b) application
〈a, b〉 pair
fst(a) first projection
snd(a) second projection
use x : s. a term variable abstraction, x ∈ V ar, s a sort

symbol
specific(a, t) term application, t an individual term
show(t, a) witness, t an individual term
select (a) in x.y.b select, x a term variable and y from V arPT (SSL)

case a of inl(x).b, inr(y).c case, x and y are variables from V arPT (SSL)

inl(a) in left
inr(a) in right
abort(a, F ) abort, where F is a formula
ρ • a translation
hide(a, SL) hide, SL a symbol list
union1(a,Sp) first union, Sp a specification expression
union2(a,Sp) second union, Sp a specification expression
ext1(a,Sp) first extension, Sp a specification expression
ext2(a,Sp) second extension, Sp a specification expression

Fig. 8.1. Syntax for the proof-terms of LTT (SSL).

8.1 A type theory for SSL

To define our logical type theory LTT (SSL), we proceed as we did for our
version of Hoare Logic (Chapter 5 of Part III). We define a version of the lambda



8.1 A type theory for SSL 255

calculus whose terms (referred to as “proof-terms”) represent proofs. We take
types of proof-terms to be pairs of specification expressions and formulae. Then
we define type inference rules so that correct typing of a proof-term corresponds
to a valid proof according to the rules of SSL.

8.1.1 Proof-terms

Recall that the rules of SSL extend intuitionistic logic with rules for using struc-
tured specifications. Correspondingly our proof-terms consist of the lambda
calculus for intuitionistic type theory (Chapter 2 of Part II) extended with
additional constructs to handle structured specifications.

The syntax for proof-terms, PT (SSL) is given in Fig. 8.1.
Notation 8.1. Proof-terms are given with respect to two sets of variables:

• V arPT (SSL), a denumerable set of proof-term variables, and
• V ar, the set of individual term variables (already used to define terms of

SSL in the previous chapter).

Similar to the logical type theory for intuitionistic logic in Chapter 2, our
proof-terms involve individual terms (the terms used within the types of the
proof-terms). Individual terms come from signatures of specification labels used
in rules. However, for the purposes of speaking about proof-terms, it will some-
times be helpful to speak about the set of all individual terms, without reference
to the particular signature they come from.
Notation 8.2. The set of all individual terms is the set of terms for all signatures,⋃

Σ∈CSig

Term(Σ, V ar)

For the rest of this book, we shall simply refer to this set as individual terms.
Remark 8.1. Note that individual terms are distinct from the proof-terms of
LTT (SSL). The former are used by formulae of IHL, while the latter are used in
the logical type theory to represent SSL proofs. Individual terms occur within
proof-terms to denote the use of individual terms as witnesses in instances of
(∃-I) and for instantiation in instances of (∀-E).
Notation 8.3. Formulae used in proof-terms are taken from the set of well-
formed formulae for all signatures,⋃

Σ∈CSig

WFF (Σ, V ar)

For the rest of this book, we shall simply refer to this set as formulae.
Remark 8.2. On its own, the translation proof-term

ρ • a
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is pure syntax and has no semantics of evaluation — it does not denote the
evaluated application of the symbol map ρ to a. However, later, when we de-
fine a normalization strategy for proofs, we will simplify translation terms by
evaluating symbol maps.

8.1.2 Types

A theorems of SSL involves a specification expression paired with a formula.
Because we want types of proof-terms to correspond to proved expressions, a
distinguishing feature of our theory is that its types will be specification/formula
pairs, from the set

Pairs(SSL) = {Sp � F | Sp is a specification expression and
F is a formula from

⋃
Σ∈CSig WFF (Σ, V ar)}

Remark 8.3. This treatment of types is similar to our work on adapting
the Curry–Howard isomorphism to Hoare logic, where types range over pro-
gram/formula pairs. It suggests a wider range of application of the Curry–
Howard isomorphism to logical systems that involve formulae paired with some
kind of labels (so-called labelled deductive systems [Gab96]). We leave explo-
ration of this possibility to future research.

8.1.3 Type inference rules

We use proof-terms to denote SSL proofs. This follows from associating types
with proof-terms by the typing relation (.)(.). When p ∈ PT (SSL) is associated
with type (Sp � F ) ∈ Pairs(SSL), we write pSp
F and say that p represents a
proof of the pair Sp � F .

A proof-term correctly represents a proof when it is typed with the proof’s
formula and specification according to a set of type inference rules. Each type
inference rule corresponds to a rule of SSL. Consequently the division between
logical and structural rules is preserved.

The rules for typing proof-terms that denote instances of logical rules are
given in Fig. 8.2, while correct typing of proof-terms for structural rules is given
in Fig. 8.3.

The general form of the induction schema corresponds to the typing schema
given in Fig. 8.4.

These rules define an inference relation �LTT (SSL) that holds between a con-
text Γ and a typed proof-term pSp
F . A context Γ consists of a set of assumption
formulae with associated proof-term variables

Γ ∈ P({uF | u ∈ V arPT (SSL) and
F is a formula from

⋃
Σ∈CSig WFF (Σ, V ar)})

(We often write (Γ1, Γ2) for the union of two contexts (Γ1 ∪ Γ2).)
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uA � ass(Sp, uA)Sp	A
(Ass-I) ∅ � ax(〈Σ, Ax〉, A)〈Σ,Ax〉	A

(Ax-I)

where Sig(A) ⊆ Sig(Sp) where A ∈ Ax

Γ, x : A � dSp	B

Γ � λx : A.dSp	(A⇒B)
(⇒-I) Γ1 � dSp	A⇒B Γ2 � rSp	A

Γ1, Γ2 � (dr)Sp	B
(⇒-E)

Γ1 � dSp	A Γ2 � eSp	B

Γ1, Γ2 � 〈d, e〉Sp	A∧B
(∧-I)

Γ � dSp	A1∧A2

Γ � fst(d)Sp	A1
(∧-E1)

Γ � dSp	A1∧A2

Γ � snd(d)Sp	A2
(∧-E2)

Γ � dSp	A

Γ � inl(d)Sp	A∨B
(∨-I1)

Γ � eSp	B

Γ � inr(e)Sp	A∨B
(∨-I2)

Γ � fSp	A∨B Γ1, x
A � dSp	C Γ2, y

B � eSp	C

Γ, Γ1, Γ2 � case f of inl(x).d, inr(y).eSp	C
(∨-E)

Γ � dSp	A

Γ � use x : s. dSp	∀x:s•A
(∀-I) Γ � dSp	∀x:s•A

Γ � specific(d, t)Sp	A[t/x]
(∀-E)

Γ � dSp	A[t/x]

Γ � show(t, d)Sp	∃x:s•A
(∃-I)

Γ1 � dSp	∃x:s•A Γ2, y
A[z/x] � eSp	C

Γ1, Γ2 � select (d) in z.yA[z/x].eSp	C
(∃-E)

Γ � dSp	⊥

Γ � abort(d, A)Sp	A
(⊥-E)

We abbreviate the relation �LTT (SSL) by �. These rules have the same conditions of
application as the corresponding rules of Fig. 7.4, Chapter 7, p. 238.

Fig. 8.2. Logical rules of SSL represented in the logical type theory LTT (SSL).

Remark 8.4. An assumption variable u from a context can be used to build a
larger proof-term by means of the (Ass-I) rule. Applications of that rule will be
denoted by subterms of the form ass(F,Sp, u) in the larger proof-term.

The rule for translation, (trans), requires us to apply symbol mappings
to context formulae and to the formula of the conclusion. So we require the
following definition.

Definition 8.1.1 (Translation of contexts). The translation of the context
Γ by a symbol mapping ρ is written ρ‘Γ , and is defined by

ρ‘Γ = {uρ(G) | uG ∈ Γ}
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Γ � dSp	A

ρ‘Γ � (ρ • d)(Sp with ρ)	ρ•A
(trans)

Γ � dSp	A

Γ � hide(d, SL)(Sp hide SL)	A
(hide)

where Γ ∪ {A} ⊂ WFF (Sig(Sp)/SL, V ar)

Γ � dSp 1	A

Γ � union1(d,Sp 2)(Sp 1 and Sp 2)	A
(union1)

Γ � dSp 2	A

Γ � union2(d,Sp 1)(Sp 1 and Sp 2)	A
(union2)

Γ � dSp 1	A

Γ � ext1(d,Sp ext)(Sp 1 then Sp ext)	A
(ext1)

Γ � dSp ext	A

Γ � ext2(d,Sp ext)(Sp 1 then Sp ext)	inr(A)
(ext2)

We abbreviate the relation �LTT (SSL) by �. These rules have the same conditions of
application as the corresponding rules of Fig. 7.5, p. 239, Chapter 7.

Fig. 8.3. Type inference rules of LTT (SSL) corresponding to the structural rules of
SSL.

8.1.4 The Curry–Howard isomorphism

The Curry–Howard isomorphism for intuitionistic logic states that proofs of
formulae can be denoted by correctly typed terms of a typed lambda calculus
with dependent products and sums. An analogous property holds between terms
of our logical type theory and proofs of theorems in our logic.

Theorem 8.1.2 (Curry–Howard correspondence between LTT(SSL) and
SSL). The following properties hold

1. Given a natural deduction proof D of �SSL Sp � A, we can construct a well
typed term �LTT (SSL) fSp
A.

2. Given a well-typed term �LTT (SSL) fSp
A, we can construct a natural de-
duction proof D with conclusion Sp �A

....
�LTT (SSL) Sp �A

Proof. Item 1) is derived by straightforward induction on the structure of the
deduction D. Item 2) is obtained by induction on the structure of the inference
�LTT (SSL) fSp
A. ��
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Let Σ = 〈S, F, P 〉 be a signature that contains a sort s generated by constructors
Cons ⊆ Fs,

Conss = {c1 : s, . . . , cn : s, f1 : (s1
1×. . .×s1

m1) → s, . . . , fp : (sp
1×. . .×sp

mp
) → s}

Let P be a formula of Σ with x : s free.
For each i = 1, . . . , p we make the following definitions. Take a set of variables
{xi

j}j=1,...,mi corresponding to argument sorts of fi, we define

M(s, {xi
j : si

j}j=1,...,mi) = {xi
j | si

j = s}
(When this set is empty, then fi does not involve s as an argument sort.)
If this set is empty, then we define

Pfi = ∀xi
1 : si

1, . . . , x
i
mi

: si
mi

• P [fi(x1
1, . . . , x

m
mi

)/x]

Otherwise, we take

Pfi = ∀xi
1 : si

1, . . . , x
i
mi

: si
mi

• Qfi ⇒ P [fi(xi
1, . . . , x

i
mi

)/x]

where Qfi is formed from M(s, {xi
j : si

j}j=1,...,mi) as follows. Assume M(s, {xi
j :

si
j}j=1,...,mi) = {x1, . . . , xk}. If k = 1,

Qfi = P (x1)

If k > 1,
Qfi = P (x1) ⇒ . . . ⇒ P (xk)

Then we have the following induction schema for s in Σ:

a
〈Σ,Ax〉	P [c1/x]
1 . . . a

〈Σ,Ax〉	P [cn/x]
n b

〈Σ,Ax〉	Pf1
1 . . . b

〈Σ,Ax〉	Pfp
p

rec(Conss, s, [a1; . . . ; an; b1; . . . ; bp])〈Σ,Ax〉	∀x:s•P
Ind(s, Σ)

Fig. 8.4. Type inference schema corresponding to the general structural induction
schema.

8.1.5 Proof-term information

A proof-term is a very compact representation of information important for
formal reasoning about proofs. Given a proof-term d with a derivation

Γ �LTT (SSL) dSp
F

there are algorithms to compute the following data from d:

1. the current context con(d),
2. the specification sp(d) for which d is a derivation, and
3. the derived formula, for(d).



260 8 Proof-theoretic Properties of SSL

We define these algorithms in Figs. 8.5 and 8.6, by a modification of those given
for the system of [WCP98].

con is defined by:
con(ass(Sp, uA)) = {uA} con(ax(〈Σ, Ax〉, F )) = ∅

con(abstract uA. d) = con(d)/{uA} con(app(d, r)) = con(d) ∪ con(r)
con(inl(d)) = con(d) con(inr(e)) = con(e)

con(use x : s. d) = con(d) con(specific(d, t)) = con(d)
con(〈d, e〉) = con(d) ∪ con(e) con(abort(d, A)) = con(d)
con(fst(d)) = con(d) con(snd(d)) = con(d)
con(case f of inl(x).d, inr(y).e) = con(d) ∪ con(e) ∪ con(f)

con(select (d) in z.y.e) = con(d) ∪ con(e)
con(ρ • d) = ρ‘(con(d)) con(hide(d, SL)) = con(d)

con(union1(d,Sp 2)) = con(d) con(union2(d,Sp 1)) = con(d)
con(ext1(d,Sp 2)) = con(d) con(ext2(d,Sp 1)) = con(d)

Fig. 8.5. The definition of con.

8.1.6 Example: Password checking system

Recall the password checking system example given in the previous chapter.
In Section 7.3, pp. 245–247, we developed a theorem in SSL about the system
specification PwdSys: given any input x of a password, there is always an
appropriate response message to be output, explaining if the password is of the
correct length or not. This is the theorem

�LTT (SSL) PwdSys � ∀x : nat • ∃y : string • V alidMsg(x, y) (8.1)

We will now show how the proof of this theorem can be encoded as a proof-
term in our logical type theory.

We require the following lemma, proved by boolean induction over
NatBoolean, as identified in Example 7.7 of the previous chapter. Observe
that a proof by induction corresponds to application of the induction schema
proof-term constructor.

ax(NatBoolean, F = F )NatBoolean�F=F (∨-I2)

pNatBoolean�F=T ∨F=F
1

ax(NatBoolean, T = T )NatBoolean�T=T (∨-I1)

pNatBoolean�T=T ∨T=F
2

rec([T, F ], boolean, [p1, p2])NatBoolean�∀b:boolean•b=T ∨b=F
Ind(Boolean)

(8.2)
where p1 = inr(ax(NatBoolean, F = F )) and p2 = inl(ax(NatBoolean, T =
T )).

In the proof of the last chapter, Section 7.3, pp. 245–247, the property (8.2)
was used to show that the function inRange(x) of PwdCore is either true
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sp is defined by:
sp(ass(Sp, uA)) = Sp sp(ax(〈Σ, Ax〉, A)) = 〈Σ, Ax〉

sp(abstract x. dA) = sp(d) sp(app(d, r)) = sp(d)
sp(use x : s. d) = sp(d) sp(specific(d, t)) = sp(d)

sp(〈d, e〉) = sp(d) sp(fst(d)) = sp(d)
sp(snd(d)) = sp(d)

sp(show(t, d)) = sp(d) sp(abort(d, F )) = sp(d)
sp(inl(d)) = sp(d) sp(inr(e)) = sp(e)
sp(case f of inl(x).d, inr(y).e) = sp(d)

sp(select (d) in z.y.e) = sp(d)
sp(ρ • d) = sp(d) with ρ sp(hide(d, SL)) = sp(d) hide SL

sp(union1(d,Sp 2)) = sp(d) and Sp 2 sp(union2(d,Sp 1)) = sp(d) and Sp 2
sp(ext1(d,Sp 2)) = sp(d) and Sp 2 sp(ext2(d,Sp 1)) = sp(d) and Sp 2

for is defined by:
for(ass(Sp, uA)) = A for(ax(〈Σ, Ax〉, A)) = A

for(abstract xA. d) = (A ⇒ for(d)) for(〈d, e〉) = for(d) ∧ for(e)
for(inl(d)) = (for(d) ∨ B) for(inr(e)) = (A ∨ for(e))

for(use x : s. d) = ∀x : s • for(d) for(show(t, d)) = ∃x : s • for(d)
for(app(d, e)) = B where for(d) = (A → B) and for(r) = A

for(fst(d)) = A1 where for(d) = (A1 ∨ A2)
for(snd(d)) = A2 where for(d) = (A1 ∨ A2)

for(specific(d, t)) = A[t/x] where for(d) = ∀x : s • A
for(abort(d, A)) = A

for(case f of inl(x).d, inr(y).e) = for(d)
for(select (d) in z.y.e) = for(e)

for(ρ • d) = ρ(for(d)) for(hide(d, SL)) = for(d)
for(union1(d,Sp 2)) = for(d) for(union2(d,Sp 1)) = for(d)

for(ext1(d,Sp 2)) = for(d) for(ext2(d,Sp 1)) = for(d)

Fig. 8.6. The definitions of sp and for.

or false for any input password x. This required the use of structural rules to
build PwdCore from NatBoolean. The resulting proof-term makes use of
proof-term constructors corresponding to these rules.

.... (8.2)

pNatBoolean�∀b:boolean•b=T ∨b=F
3

BtoB • p
(BtoB•NatBoolean)�∀b:bool•b=true∨b=false
3

(trans)

union1(BtoB • p3, StringBool)SNB�∀b:bool•b=true∨b=false
(union1)

ext1(union1(BtoB • p3, StringBool), 〈SExt, AExt〉)PwdCore�∀b:bool•b=true∨b=false
(ext1) (8.3)

where p3 = rec([T, F ], boolean, [p1, p2]),

SNB = (BtoB •NatBoolean) and StringBool
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and where BtoB is the symbol mapping [Boolean �→ Bool, T �→ true, F �→
false] and 〈SExt, AExt〉 is the signature and axiom extension required to form
PwdCore from SNB.

In the SSL proof of the previous chapter, we instantiated (8.3) with
inRange(x) for b, by application of (∀-E).

That proof corresponds to the following proof-term construction

p
PwdCore
inRange(x)=true∨inRange(x)=false
4 (8.4)

where p4 = specific(ext1(union1(BtoB • p3, StringBool), 〈SExt, AExt〉), inRange(x)).
We derive (8.1) by reasoning over the possible cases that either PwdCore�

inRange(x) = true or PwdCore � inRange(x) = false.
Assuming the first case corresponds to the use of a proof-term variable

uPwdCore
inRange(x)=true

in a derivation of the form

.... (7.10)

pPwdCore	A2
7

.... (7.9)

pPwdCore	A1
6

uinRange(x)=true

p
PwdCore	inRange(x)=true
5

(Ass-I)

app(p6, p5)PwdCore	OkPwd(x)
(→-E)

app(p7, app(p6, p5))PwdCore	V alidMsg(x,‘Password acceptable’)
(→-E)

(∃-I)

show(‘Password acceptable’, app(p7, app(p6, p5)))PwdCore	∃y:string•V alidMsg(x,y)

(8.5)
where p5 = ass(SpecNamePwdCore, uinRange(x)=true). The proof-term
pPwdCore
A1
6 corresponds to an instantiated axiom of PwdCore, which can

be written in full as

specific(ax(PwdCore,∀x : nat • inRange(x) = true→ OkPwd(x)), x)

with type PwdCore � inRange(x) = true → OkPwd(x). The proof-term
pPwdCore
A2
7 also corresponds to an instantiated axiom of PwdCore, which

when written in full is

specific(ax(PwdCore,∀x : nat •OkPwd(x)→
V alidMsg(x, ‘Password acceptable’)), x)

with type PwdCore �OkPwd(x)→ V alidMsg(x, ‘Password acceptable’)
In the second case, similar reasoning over an assumption variable

vPwdCore
inRange(x)=false, using the axioms of PwdCore will give a proof-term
derivation of the form

vinRange(x)=true

ass(PwdCore, vinRange(x)=true)PwdCore	inRange(x)=false
(Ass-I)

....
p

PwdCore	V alidMsg(x,‘Please choose a password in correct range’)
8

show(
(

‘Please choose a
password in correct range’

)
, p8)PwdCore	∃y:string•V alidMsg(x,y)

(∃-I)
(8.6)
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here p8 is a proof-term involving manipulation of PwdCore axioms.
By applying (∨-E) using (8.4), (8.5) and (8.6), followed by (∀-I) and (hide)

will give (8.1), as required

�LTT (SSL) pPwdSys
∀x:nat•∃y:string•V alidMsg(x,y)

with proof-term

p = hide(use x : nat. case p4 of

inl(u).show(‘Password acceptable’, app(p7, app(p6, p5))),
inr(v).show(‘Please choose a password in correct range’, p8),

{ge, inRange})
Fully expanded, the proof-term is as follows

p = hide(use x : nat. case

(specific(ext1(union1(BtoB • (rec([T, F ], boolean,

[(inr(ax(NatBoolean, T = T ))),
(inl(ax(NatBoolean, T = T )))])),StringBool), 〈SExt, AExt〉),

inRange(x)))
of inl(u).show(‘Password acceptable’, app(p7, app(p6, p5))),

inr(v).show(‘Please choose a password in correct range’, p8),
{ge, inRange})

By our version of the Curry–Howard isomorphism (Theorem 8.1.2 above),
the entire SSL proof can be retrieved from this proof-term. In particular, the
proof-term encodes constructive information obtained from the (∃-I) steps of
(8.5) and (8.6). The witness strings for the variable y are always valid messages,
such that V alidMsg(x, y) given a password number x.

In Chapter 9 we will use the Curry–Howard protocol to provide a method
for extracting correct programs from proofs in SSL. We will show how the
constructive information in proof-term p can be used to extract a password
checking program, which outputs an appropriate response for any given pass-
word number input. Then we will also show how this program can be treated
as a specification of a function to build a consistent extension of PwdSys.

However, before we investigate program extraction, we will investigate some
simplifications corresponding to proof normalization that can be made to proof-
terms. These simplifications will help in extracting programs, because they will
yield more optimal programs.

8.1.7 Full form of the logical type theory

In full, the logical type theory LTT (SSL) is defined as a tuple, following the
general definition of Definition 3.2.3, Chapter 3, p. 84:
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LTT (SSL) = 〈PT (SSL), Pairs(SSL), (.)(.),�LTT (SSL), PTR(LTT (SSL)), �SSL〉
consisting of:

• a set of proof-terms PT (SSL), described in 8.1.1 and Fig. 8.1,
• a set of types, taken as Pairs(SSL),
• a typing relation (.)(.) between proof-terms and types, so that if p ∈ PT (SSL)

has type (Sp � F ) ∈ Pairs(SSL), we write pSp
F ,
• a type inference relation given by �LTT (SSL) with rules PTR(LTT (SSL)),

explained in 8.1.3, and
• a normalizing relation �SSL, described in the next section (Section 8.2,

p. 264).

8.2 Normalization and proof-term reduction

We define a normalization strategy for removing redundant parts of SSL proofs,
based on proof normalization for intuitionistic logic.

In intuitionistic logic, normalization consists of repeatedly deleting matching
applications of introduction and elimination rules (see, e.g., [Gen69] or [GLT89]
and also Chapter 2). As we have seen, the logical rules of SSL correspond to
intuitionistic rules, with introduction and elimination rules for the connectives.
Consequently, we can define a similar kind of normalization.

As was the case for Int in Chapter 2 (pp. 39–41) and for Hoare logic in
Chapter 5 (pp. 155–156), we define our proof normalization strategy in terms
of a normalizing relation over proof-terms of our logical type theory.

The relation �SSL corresponding to normalization is given inductively by
the rules of Figs. 8.7 and 8.9. As usual, the LHD and the RHD of a rule are
called the redex and the reduct of the rule, respectively.

We write
p �̂SSL p′

when p′ may be obtained from p by the transitive closure of �LTT (SSL) as defined
in Figs. 8.7 and 8.9. When p �̂SSL p′ holds, then p′ is obtainable from p by a
sequence of replacements of subterms using the rules of Figs. 8.7 and 8.9. In
this case, we say that p is reducible to p′.

The rules fall into two categories:

• Reductions of logical rules. These reductions follow intuitionistic normal-
ization, and form extension of β-reduction over the proof-terms that are
corresponding to sub-proofs in which a connective is introduced and then
immediately removed. Fig. 8.7 gives these rules.

• Moving of structural rules. Redundances can also occur due to application
of structural rules in between two logical introduction and elimination rules
that may be further simplified. To deal with this, we introduce reduction
rules for moving structural rules up a proof tree before logical introduction
rules. These reduction rules are given in Fig. 8.9.
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app(abstract xA. aSp	B , bSp	A) �SSL a[b/x]Sp	B

specific(use x : s. aSp	∀x:s•A, v) �SSL a[v/i]Sp	A[v/x]

fst(〈a, b〉Sp	A∧B) �SSL aSp	A

snd(〈a, b〉Sp	A∧B) �SSL bSp	B

case inl(a)Sp	A∨B of inl(x).bSp	C , inr(y).cSp	C �SSL b[a/x]Sp	C

case inr(a)Sp	A∨B of inl(x).bSp	C , inr(y).cSp	C �SSL c[a/y]Sp	C

select (show(v, a)Sp	∃y:s•P ) in x.y.bSp	C �SSL b[a/x][v/y]Sp	C

Fig. 8.7. Logical reduction rules that inductively define �SSL.

The rest of this section provides some motivation for these two categories. Also,
at the end of this section, we briefly discuss further permutations of rules that
are possible, but which are not included in our normalization strategy. These
permutations were identified in [WCP98, Pet96] for the calculus of that work,
but are also applicable here.

8.2.1 Reductions of logical rules

We provide some motivation for the rules of Fig. 8.7. Our rules define reduction
as a relation �SSL that holds between proof-terms.

The simplest cases of logical reduction are where a connective is introduced
and then immediately removed.

Here we give two simple examples.
Example 8.1. The proof

....
Γ1 �LTT (SSL) dSp
A

....
Γ2 �LTT (SSL) eSp
B

Γ1, Γ2 �LTT (SSL) 〈d, e〉Sp
(A∧B)
(∧-I)

Γ1, Γ2 �LTT (SSL) fst(〈d, e〉)Sp
A
(∧-E)

can be reduced to the very simple proof
....

Γ1 �LTT (SSL) dSp
A

because the introduction of the conjunct B ultimately adds nothing to the
proof.

To define the full range of possible logical reductions using proof-terms, we
need to define substitution, in the obvious way.

Definition 8.2.1 (Substitution). The substitution of the proof-term r for the
proof-term variable x in the proof-term d, written d[r/x], is defined recursively,
as in Fig. 8.8.
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1) Logical rules

ass(Sp, yA)[r/x] =
{

r
ass(Sp, yA)

if y = x
otherwise

ax(〈Σ, Ax〉, A)[r/x] = ax(〈Σ, Ax〉, A)

abstract yB . d[r/x] =

⎧⎪⎪⎨
⎪⎪⎩

abstract yB . d
abstract yB . d[r/x]

abstract yB . d[z/y][r/x]

if y : B = x : A
if y : B �= x : A,
y not free in r,
otherwise, where z is new

〈d, e〉[r/x] = 〈d[r/x], e[r/x]〉
(inl(d))[r/x] = inl(d[r/x])
(inr(d))[r/x] = inr(d[r/x])

(use y : s. d[r/x] = use y : s. (d[r/x])
show(t, d)[r/x] = show(t, d[r/x])
app(d, e)[r/x] = app((d[r/x]), (e[r/x]))
(fst(d))[r/x] = fst(d[r/x])

(snd(d))[r/x] = snd(d[r/x])
specific(d, t)[r/x] = specific(d[r/x], t)

case f of inl(z).d, inr(y).e[r/x] = case f [r/x] of inl(z).d[r/x], inr(y).e[r/x]
select (d) in z.y.e[r/x] = select (d[z/x]) in z.y.e[z/x]

2) Structural rules

(ρ • d)[r/x] = (ρ • d[r/x])
(hide(d, SL))[r/x] = hide(d[r/x], SL)

union1(d, Sp 2)[r/x] = union1(d[r/x], Sp 2)
union2(d, Sp 1)[r/x] = union2(d[r/x], Sp 1)

ext1(d, Sp 2)[r/x] = ext1(d[r/x], Sp 2)
ext2(d, Sp 1)[r/x] = ext2(d[r/x], Sp 1)

Fig. 8.8. Definition of substitution of proof-terms for proof-term variables.

Example 8.2. Substitution is used to define reductions involving the⇒ connec-
tive. To see this, consider the proof

{xA} �LTT (SSL) xA

....
Γ1, {xA} �LTT (SSL) eSp
B

Γ1 �LTT (SSL) abstract xA. eSp
(A⇒B)
(⇒-I)

....
Γ2 �LTT (SSL) dSp
A

Γ2, Γ1 �LTT (SSL) app(abstract xA. e, d)Sp
B
(⇒-E)

This too can be reduced to the much simpler proof:
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....
Γ2 �LTT (SSL) dSp
A

....
Γ1, Γ2 �LTT (SSL) e[d/x]Sp
B

where the proof ....
Γ2 �LTT (SSL) dSp
A

has replaced the assumption

{xA} �LTT (SSL) xSp
A

Example 8.3. Here is the logical reduction for a particular (∨-I1) followed by a
(∨-E). Note that, for simplicity, we have assumed that the contexts for the two
proofs of C are the same. (The case of a (∨-I2) followed by a (∨-E) is similar.)

....
Γ2, {xA} �LT T (SSL) dSp�C

....
Γ2, {yB} �LT T (SSL) eSp�C

....
Γ1 �LT T (SSL) gSp�A

Γ1 �LT T (SSL) inl(g)Sp�(A∨B)
(∨-I1)

Γ2, Γ1 � (case inl(g) of inl(x).d, inr(y).e)Sp�C
(∨-E)

This reduces to application of a new, derivable rule (Ass-E):

....
Γ2, {xA} �LTT (SSL) dSp
C Γ1 �LTT (SSL) gSp
A

Γ2, Γ1 �LTT (SSL) d[g/x]Sp
C
(Ass-E)

The corresponding proof-term reductions are as follows:

(case inl(g) of inl(x).d, inr(y).e)Sp
C �SSL d[g/x]Sp
C

8.2.2 Moving structural rules

We now provide some motivation for the rules of Fig. 8.9. Under certain con-
ditions, it is also possible to move structural rules up and down proofs. This
can lead to matching of previously separated introduction and elimination rules
and, consequently, to further logical reductions.
Example 8.4. Consider the following example.

Γ, {uA} �LT T (SSL) dSp�B

Γ �LT T (SSL) (abstract uA. d)Sp�A⇒B
(⇒-I)

ρ‘(Γ ) �LT T (SSL) (ρ • abstract uA. d)(Sp with ρ)�ρ(A)⇒ρ(B)
(trans)

Γ1 �LT T (SSL) r(Sp with ρ)�ρ(A)

ρ‘(Γ ), Γ1 �LT T (SSL) (app(ρ • abstract uA. d, r))(Sp with ρ)�ρ(B)
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S(abstract uA. d) �SSL abstract uA. S(d)
S(use x : s. d) �SSL use x : s. S(d)
S(show(t, d)) �SSL show(t, S(d))

S(〈d, e〉) �SSL 〈S(d), S(e)〉
S(inl(d)) �SSL inl(S(d))
S(inr(d)) �SSL inr(S(d))

where S(p) denotes any of the following possible operations
on a proof-term p: union1(p,Sp), union2(p,Sp) ext1(p,Sp) or
ext2(p,Sp).

ρ • (abstract uA. d) �SSL abstract uρ(A). S(d)
ρ • (use x : s. d) �SSL use x : ρ(s). (ρ • d)
ρ • (show(t, d)) �SSL show(ρ(t), (ρ • d))

ρ • (〈d, e〉) �SSL 〈(ρ • d), (ρ • e)〉
ρ • (inl(d)) �SSL inl((ρ • d))
ρ • (inr(d)) �SSL inr((ρ • d))

hide(abstract uA. d, SL) �SSL abstract uA. S(d)
hide(use x : s. d, SL) �SSL use x : s. hide(d, SL)

hide(〈d, e〉, SL) �SSL 〈hide(d, SL), hide(e, SL)〉
hide(inl(d), SL) �SSL inl(hide(d, SL))
hide(inr(d), SL) �SSL inr(hide(d, SL))

Fig. 8.9. Structural reduction rules that inductively define �SSL.

where the last step of the proof is an instance of (⇒-E). Observe that the
lambda abstraction and application in the proof-term (app(ρ • abstract u. d, r))
cannot be matched for reduction, because of the renaming over the abstraction.
However, if we swap the order of the rule applications (⇒-I) and (trans), we
obtain a correctly typed proof-term, for which a logical reduction can be applied:

Γ, {uA} �LT T (SSL) dSp�B

ρ‘(Γ ), {uρ(A)} �LT T (SSL) (ρ • d)(Sp with ρ)�ρ(B)
(trans)

ρ‘(Γ ) �LT T (SSL) (abstract uA. ρ • d)Sp�ρ(A)⇒ρ(B)
(⇒-I)

Γ1 �LT T (SSL) r(Sp with ρ)�ρ(A)

ρ‘(Γ ), Γ1 �LT T (SSL) (ρ • app(abstract uA. ρ • d, r))(Sp with ρ)�ρ(B)
(⇒-E)

The resulting proof-term reduces as follows

app(abstract uA. ρ • d, r) �SSL (ρ • d)[r/u]

Clearly it is in our interest to systematically move structural rules above
introduction rules, when possible, in order to eliminate further redundancies in
a proof. We do this by extending �SSL with rules for swapping proof-terms for
structural and introduction rules. Fig. 8.9 gives these additional rules.



8.2 Normalization and proof-term reduction 269

(composition) ρ2 • ρ1 • dSp with ρ1 with ρ2	ρ2•(ρ1•(A))

ρ∗ • dSp with ρ∗	ρ∗•(A)

(union1) trivializing hide(union1(d,Sp 2), Σ1)((Sp 1 and Sp 2) hide Σ1)	A

�trivdSp 2	A

(union2) trivializing hide(union2(d,Sp 1),Sp 2)((Sp 1 and Sp 2) hide Σ1)	A

�trivdSp 1	A

(ext1) trivializing hide(ext1(d,Sp 2), Σ1)((Sp 1 and Sp 2) hide Σ1)	A

�trivdSp 1	A

(ext2) trivializing hide(ext2(d,Sp 1), Σ2)((Sp 1 and Sp 2) hide Σ2)	A

�trivdSp 2	A

Sp 1 and Sp 2 are arbitrary specification expressions.
Σ1 denotes Sig(Sp 1) and Σ2 denotes Sig(Sp 2).
Note that ρ ∗ is the composition of ρ1 followed by ρ2.

Fig. 8.10. Trivializing structural reductions.

Remark 8.5. Such interchange is not possible for (hide) and (∃-I) rules because
an ∃ introduction may be applied with respect to a witness term that is later
hidden.

In this case, the rules cannot be reversed. For example:

Γ �LTT (SSL) dSp
A[t/x]

Γ �LTT (SSL) show(t, d)Sp
∃x:s•A
(∃-I)

Γ �LTT (SSL) hide(show(t, d), t)(Sp hide t)
∃x:s•A
(hide)

cannot be replaced by a sequence

Γ �LTT (SSL) dSp
A[t/x]

Γ �LTT (SSL) hide(d, t)(Sp hide t)
A[t/x]
(hide)

Γ �LTT (SSL) show(t, hide(d, t))(Sp hide t)
∃x:s•A
(∃-I)

The hiding inference is not permitted because the hidden term t is then used
as a witness by the existential introduction.

8.2.3 Reduction preserves derivability

We have the following important lemma about the reduction relation �SSL

Lemma 8.2.1. Let p and p′ be proof-terms such that p �SSL p′. If we have a
derivation Γ �LTT (SSL) pSp
A then we can construct a derivation Γ �LTT (SSL)
p′Sp
A.
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Proof. By a straightforward induction on the possible forms of p. ��
Remark 8.6. Our main concern is the extraction of programs from proofs. As dis-
cussed in Chapter 3 of Part II and seen in the cases of intuitionistic logic (Chap-
ter 2 of Part II) and Hoare logic (Chapter 5 of Part III), proof-normalization is
a useful means of simplifying proof-terms prior to transformation into required
programs. Application of a normalization strategy will yield simpler programs,
because, as we will see in the next chapter, the size of an extracted program
often reflects the size of the proof.

Note, however, we are generalizing state-of-the-art proofs-as-programs, where
the importance of normalization is devalued from näıve methods for construc-
tive program extraction. In those methods, proofs are treated as programs with
proof-normalization considered to be an operational semantics. Our work stands
in contrast to that treatment, by virtue of our adherence to the Curry–Howard
protocol. Normalization does not correspond to executing programs, because,
in the protocol, proofs are not considered to be programs. (See Remark 2.14 of
Chapter 2, p. 2.14.) Proofs are transformed into programs via an extraction
map. Potentially, we could extract correct programs from proofs that are not
normal. So, from the perspective of program extraction according to the proto-
col, normalization should be seen as a pre-processing strategy to be carried out
prior to extraction for the purpose of yielding more optimal programs.

8.2.4 Further possible reductions

The normalization process defined by Figs. 8.7 and 8.9 does not eliminate all
possible redundancies in a proof. Following [WCP98] and [Pet96], we can define
further trivializing reductions over structural rules. However, these reductions
result in changing the specification of the conclusion. This is not the case of the
normalization reductions discussed above, where the formula and specification
expression remain the same, and only the proof is simplified.
Example 8.5. As an example of a structural rule reduction, two translations can
be consolidated into one. In particular translating by ρ followed by ρ−1 can be
regarded as redundant. In general we have the reduction:

Γ �LTT (SSL) dSp
A

ρ ‘
1(Γ ) �LTT (SSL) (ρ1 • d)Sp with ρ1
ρ1(A)

(trans)

ρ ‘
2(ρ

‘
1(Γ )) �LTT (SSL) (ρ2 • ρ1 • d)Sp with ρ1 with ρ2
ρ2(ρ1(A))

(trans)

reduces to

Γ �LTT (SSL) dSp
A

ρ∗ ‘(Γ ) �LTT (SSL) (ρ∗ • d)(Sp with ρ∗)
ρ∗(A)
(trans)

(8.7)

where ρ∗ = ρ2 ◦ ρ1 (the concatenation of the symbol maps ρ2 and ρ1). In the
special case that ρ2 = ρ−1

1 or vice versa, the translation of (8.7) becomes a
triviality and can be omitted.
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Example 8.6. Another example of a trivial, reducible proof is taking the union
with a specification whose signature is Σ and then hiding Σ, or vice versa.
The pushout for the union can be regarded as an introduction rule and hid-
ing as an elimination rule in the case where the signature goes from Sp 1 to
(Sp 1 and Sp 2) and then back (by hiding) to Sp 1. Thus we can remove the
following pair of rules (and similarly for (union1) in a proof:

Γ �LTT (SSL) dSp 1	A

Γ �LTT (SSL) union1(d,Sp 2)(Sp 1 and Sp 2)	A
(union1)

Γ �LTT (SSL) hide(union1(d,Sp 2), Sig(Sp 2))(Sp 1 and Sp 2) hide Sig(Sp 2)	A
(hide)

The list of trivializing structural reductions can be formalized by a reduction
relation �triv over proof-terms, displayed in Fig. 8.9. The list is modified from
that given in [Pet96], to account for the different syntax of our proof-terms.

Extending �SSL to include �triv will conserve the strong normalization and
Church–Rosser properties (to be proved for �SSL below). The reader is referred
to [Pet96] for a proof that can be readily adapted to our system.
Remark 8.7. For the purposes of program extraction, these structural reductions
are not as important as the logical reductions. Therefore we do not use them
for the remainder of this monograph. The reasons for this is as follows. In the
following chapter, we will define an extraction map from proof-terms to SML
functions that will ignore all structural proof-terms (except for renamings). So
the simplification of redundant structural rules is not a vital consideration.
Logical reductions, in contrast, are important for program extraction, because
the size of logical proof-terms can affect the size of extracted SML programs.

8.2.5 Strong normalization

We now prove strong normalization for our normalization reductions: that is,
we show that any sequence of normalizing reductions obtained by Figs. 8.7
and 8.9 will always terminate. We will prove this in Theorem 8.2.9 and Corollary
8.2.1. The proof follows that given by Crossley and Shepherdson [CS93] for
intuitionistic logic (based in part on the reducibility methods of Tait and of
Girard [GLT89]).

Recall that SSL consists of both logical and structural rules. The logical
part of the formal calculus is essentially intuitionistic logic with the same spec-
ification expression used to label premisses and conclusions. The proof-terms,
and reduction rules, for that part of the calculus are essentially identical to
those of intuitionistic logic. It follows that the logical part of SSL, considered
separate from the structural part, is strongly normalizing with respect to the
logical reduction rules of Fig. 8.7.

However, in order to prove strong normalization for the whole calculus we
have to include the possibility of structural reductions.

We require the following notation and definitions in our proof.
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Definition 8.2.2. We define the relation a �1 b to hold if b is obtained from
a by a single application of one of the reduction rules of Figs. 8.7 and 8.9 to a
redex of a.

If a �1 b holds, we say that b is immediately reducible from a.

Definition 8.2.3. We say that a proof-term is normal if it contains no redex.
A normal proof-term is irreducible.

Definition 8.2.4. Given a proof-term t, we let N(t) denote the least upper
bound of lengths of reduction sequences for t. We say that t is strongly normal-
izable if all reduction sequences are finite.

Remark 8.8. It is the case that, if t is strongly normalizable, then N(t) must be
finite. The converse also holds, by König’s Lemma.

Definition 8.2.5 (Neutral proof-terms). A proof-term is neutral if it is a
LTTSSL variable or is of one of the following forms:

ass(Sp, uA) ax(〈Σ, Ax〉, A) app(a, b)
specific(a, v) fst(a) snd(b) case a of inl(x).b, inr(y).c
abort(d, A) select (a) in x.y.b ρ • d hide(d, SL)
union1(d,Sp) union1(d,Sp) ext1(d,Sp) ext2(d,Sp)

Remark 8.9. A proof-term is not neutral if it is of one of the following forms:

abstract x. a use i : s. a
〈a, b〉 inl(a) inr(b) show(v, a)

Neutral proof-terms satisfy the following lemma.

Lemma 8.2.2. Let p, q, r and s be proof-terms. Assume that p is neutral.
Then the following properties are true:

• Every immediate reduct of app(p, q) is obtained by reducing p or q. That is,
the immediate reduct must be of the form app(p′, q) or app(p, q′), where p′

is an immediate reduct of p and q′ is an immediate reduct of q.
• Every immediate reduct of select (p) in x.y.q is obtained by reducing p or q.
• Every immediate reduct of case p of inl(x).q, inr(y).r is obtained by reducing

p, q or r.

Also, every immediate reduct of use x : s. p, abort(p, A), specific(p, v),
fst(p), snd(p), (ρ • p), hide(p, SL), union1(p,Sp), union2(p,Sp), ext1(p,Sp) and
ext2(p,Sp) is obtained by reducing p.

Proof. The proof follows easily from the definition of �SSL. ��
Our definition of candidates for reducibility (CR) is similar to that for the

logical type theory for intuitionistic logic, following [CS93] and Girard [GLT89].
Candidates for reducibility are sets of strongly normalizing proof-terms of a
common type. We will use CR to prove strong normalizability, by showing that
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every derivable proof-term is in a CR. Because our types now range over pairs of
specification expressions and formulae, we associate CR with such pairs (rather
than single formulae, as in the intuitionistic case). This is necessary to define
well-formed operations over CR. We define CR for specification/formulae pairs
as follows.

Definition 8.2.6 (Candidate for reducibility). A candidate for reducibility
(CR) of formula A is a set C of proof-terms of type Sp �A such that
CR1. If t ∈ C, then t is strongly normalizable.
CR2. If t ∈ C and t �1 t′, then t′ ∈ C.
CR3. If t is neutral and all immediate reducts t′ of t are in C, then t ∈ C.

Lemma 8.2.3. Assume that tSp
A is a proof-term and C is a CR of type Sp�A.
If t is neutral and normal, then t ∈ C.

Proof. This is a direct consequence of CR3. ��
Definition 8.2.7 (Operations on CR). We define operations on CR corre-
sponding to the connectives used to construct types, as follows.

Suppose that C1, C2 are CR of types (Sp � A1) and (Sp � A2) respectively.
Then define

• (C1 ⇒ C2) as the set of all proof-terms t of type Sp � (A1 ⇒ A2) such that,
for every proof-term u ∈ C1, it is true that app(t, u) ∈ C2.

• (C1 ∧ C2) as the set of all proof-terms t of type Sp � (A1 ∧ A2) such that
fst(t) ∈ C1 and snd(t) ∈ C2.

• (C1 ∨C2) as the set of all proof-terms t of type Sp � (A1 ∨A2) such that the
following holds. Assume C is any CR of some type Sp � P , f1 ∈ (C1 ⇒ C)
and f2 ∈ (C2 ⇒ C), where uC1 is not free in f1 and vC2 is not free in f2.
Then,

case t of inl(u).app(f1, u), inr(v).app(f2, v) ∈ C

Lemma 8.2.4. A CR can be obtained by applying any of the operations of
Definition 8.2.7 to other CR.

Proof. We essentially follow the proof given in [CS93], adapted for our system.
For the operations ⇒, ∧ and ∨ we must verify CR1, CR2 and CR3.

Assume that C1 and C2 are CR of types (Sp�A1) and (Sp�A2) respectively.
(⇒ case). (C1 ⇒ C2) is a CR because of the following facts.

CR1 Assuming t is in (C1 ⇒ C2) then, by Lemma 8.2.3 applied to C1, the
variable uC1 is in C1, so app(t, u) is in C2. It is the case that app(t, u) is
strongly normalizable, by CR1 for C1. Consequently, N(app(t, u)) is finite.
Then, as N(app(t, u)) ≥ N(t), N(t) is finite and t is strongly normalizable.

CR2 Assume t is in (C1 ⇒ C2) and t is immediately reducible to t′. If u is in C1
then the proof-term app(t, u) in C2, is immediately reducible to app(t′, u).
By CR2 for C2, app(t′, u) is in C2. Hence t′ is in (C1 ⇒ C2).
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CR3 Suppose t is neutral and all immediate reducts t′ of t are in (C1 ⇒ C2).
We wish to show that, if u is in C1, then app(t, u) in C2. We proceed by
induction on N(u). By CR3 for C2, since app(t, u) is neutral, we need only
prove that every immediate reduct of app(t, u) is in C2. Because t is neutral,
such a proof-term can be of two forms:
a) t can be of the form app(t′, u), where t′ is an immediate reduct of t.

Observe that t′ is in (C1 ⇒ C2). As a consequence app(t′, u) is in C2.
b) t can be of the form app(t, u′), where u′ is an immediate reduct of u. But

here N(u′) < N(u), so the result follows by the induction hypothesis.

(∧ case). (C1 ∧ C2) is a CR because we can verify the following conditions.

CR1 Assume that t is in (C1 ∧C2). This means fst(t) is in C1. Because it can be
shown that N(t) ≤ N(fst(t)) + N(snd(t)), we are done.

CR2 Assume t is in (C1 ∧C2) and t is immediately reducible to t′. Then it is the
case that fst(t) is in C1 and is immediately reducible to fst(t′). Consequently
fst(t′) is in C by CR2 for C1. Similarly we have that snd(t′) is in C2. So, t′

is in (C1 ∧ C2).
CR3 Assuming t is neutral and all immediate reducts t′ of t are in C1 ∧ C2, we

have that fst(t) is neutral and all immediate reducts of fst(t) are of the form
fst(t′), where t′ is an immediate reduct of t. Because any such fst(t′) is in
C1, fst(t) is in C1 by CR3. Similarly snd(t) is in C2. This gives us that t is
in C1 ∧ C2.

(∨ case). (C1 ∨ C2) is a CR due to the following reasoning. First, suppose
t is in C1 ∨ C2. Take an arbitrary type (Sp � P ), and a CR, called C, of type
(Sp�P ). Take arbitrary proof-terms f1 ∈ (C1 ⇒ C2) and f2 ∈ (C2 ⇒ C), where
uC1 is not free in f1 and vC2 is not free in f2.

Then the following conditions for CR are satisfied.

CR1 It is the case that

N(case t of inl(u).app(f1, u), inr(v).app(f2, v)) ≥ N(t)

But case t of inl(u).app(f1, u), inr(v).app(f2, v) is in C and hence strongly
normalizable by CR1 for C. So N(t) is finite, as required

CR2 If t is immediately reducible to t′ then

case t of inl(u).app(f1, u), inr(v).app(f2, v)

is immediately reducible to case t′ of inl(u).app(f1, u), inr(v).app(f2, v).
By CR2 for C, case t′ of inl(u).app(f1, u), inr(v).app(f2, v) is in C. As a
consequence, t′ is in (C1 ∨ C2), as required.

CR3 Assume that t is neutral and every immediate reduct t′ of t is in (C1 ∨C2).
Then

case t′ of inl(u).app(f1, u), inr(v).app(f2, v) ∈ C

We are required to show that t ∈ (C1 ∨C2). This is tantamount to deriving
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case t of inl(u).app(f1, u), inr(v).app(f2, v)

is in C. This proof-term is neutral, so we need only show that all its imme-
diate reducts are in C.
We can rephrase this requirement. We fix t and define g1 = app(f1, u

C1)
and g2 = app(f2, v

C2). We are then required to prove that

r = case t of inl(uC1).g1, inr(vC2).g2

is in C, assuming that g1 and g2 are in C, t is neutral and, for each immediate
reduct t′ of t, case t′ of inl(uC1).g1, inr(vC2).g2 is in C.
We prove this by induction over N(g1)+N(g2). Since r is neutral it is enough
to show all its immediate reducts are in C. But t is neutral, so these reducts
must be of one of three forms:
a) r1 = case t′ of inl(uC1).g1, inr(vC2).g2 where t �1 t1. By the induction

hypothesis, this is in C.
b) r2 = case t of inl(uC1).g′

1, inr(vC2).g2 where g′
1 is an immediate reduct

of g1. By CR2 for C, g′
1 is in C and N(g′

1) < N(g1). Also, if t�1 t′, then

case t′ of inl(uC1).g1, inr(vC2).g2�1

case t′ of inl(uC1).g′
1, inr(vC2).g2

⇒ case t′ of inl(uC1).g′
1, inr(vC2).g2 ∈ C by CR2

So, r2 is in C by the induction hypothesis.
c) r3 = case t of inl(uC1).g1, inr(vC2).g′

2. This case follows similarly to r2.

This last case concludes the proof. ��
Definition 8.2.8 (Canonical CR). For every labelled formula Sp � A we
define a canonical CR, CSp
A as in Fig. 8.11.

Lemma 8.2.5. Consider formulae of the forms Sp � ∀x : s •A and
Sp � ∃x : s •A. Then it is the case that CSp
∀x:s•A and CSp
∃x:s•A are CR.

Proof. Our proof adapts that given in [CS93]. As in Lemma 8.2.4 we must
verify the conditions for CR (CR1, CR2 and CR3) hold over CSp
∀x:s•A and
CSp
∃x:s•A.

(CSp
∀x:s•A case). We show CSp
∀x:s•A is a CR by the fact that the conditions
for CR are satisfied.

CR1 Assume t ∈ CSp
∀x:s•A. Then specific(t, x : s) is in CSp
A. But because
N(specific(t, x : s)) ≥ N(t) we have that t is strongly normalizing as re-
quired.

CR2 If t �1 t′, then specific(t, a) (a ∈ Term(Sig(Sp), V ar)) is immediately re-
ducible to specific(t′, a). Assume specific(t, a) is in CA[a/x]. Then, by CR2,
specific(t′, a) is also in CA[a/x]. Consequently t′ is in CSp
∀x:s•A.
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Formula A Canonical CR CSp	A

Atomic All strongly normalizable proof-terms of type Sp � A
⊥ All strongly normalizable proof-terms of type Sp � ⊥
A ⇒ B CSp	A ⇒ CSp	B

A1 ∧ A2 CSp	A1 ∧ CSp	A2

A1 ∨ A2 CSp	A1 ∨ CSp	A2

∀x : s • P The set of all proof-terms t of type (Sp � ∀x :
s•P ) such that specific(t, a) ∈ CSp	P [a/x] for every
proof-term a in Term(Sig(Sp), V ar) of sort s.

∃x : s • P The set of all proof-terms t of type (Sp�∃x : s•P )
satisfying the following condition. Take any type
(Sp � G), with x not free in G, and an arbitrary
CR, called D, of type (Sp � G). Take any proof-
term g of type (Sp � A ⇒ G) satisfying

g[t/x] ∈ CSp	A[t/x] ⇒ D

for any t ∈ Term(Sig(Sp), V ar). It must be the
case that the proof-term

select (t) in x : s.yA.app(g, y)

is in D.

Fig. 8.11. Definition of canonical CR for a labelled formula Sp � A.

CR3 Assume t is neutral and every immediate reduct t′ of t is in CSp
∀x:s•A. It
follows that, for any a ∈ Term(Sig(Sp), V ar), the proof-term specific(t′, a)
is in Sp � CA[a/x]. So specific(t, a) is neutral and any immediate reduct
of specific(t, a) is of the form specific(t′, a) where t �1 t′. By assumption
these proof-terms are in CSp
A[a/x]. It follows by CR3 for CSp
A[a/x] that
specific(t, a) is in CSp
A[a/x]. Thus t is in CSp
∀x:s•A.

(C∃x:s•A case). It is true that CSp
∃x:s•A is a CR.
To see this, we first make some assumptions. Take an arbitrary type (Sp�G)

in which x : s does not occur free. Let D be an arbitrary CR of type (Sp �G).
Take any t ∈ C∃x:s•A. Then we know that

select (t) in x.yA.app(g, y) ∈ D

for any proof-term g of type (Sp �A⇒ G) which satisfies

g[a/x] ∈ CSp
A[a/x] ⇒ D

for any a ∈ Term(Sig(Sp), V ar).
Then we can derive the conditions for CR.

CR1 Assume t is in C∃x:s•A. We abbreviate the proof-term abstract vA. ass(Sp, zG)
by g. This is a proof-term of type Sp � (A⇒ G).
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First we show that, for each a ∈ Term(Sig(Sp), V ar), it is the case that

g[a/x] = abstract vA[a/x]. zSp
A[a/x] (8.8)

is in CSp
(A[a/x] ⇒ D).
We rephrase (8.8) as follows: we wish to prove that, for every u ∈ CSp
A[a/x],
it is the case that

s = app(g[a/x], uSp	A[a/x]) = app(abstract vA[a/x]. , ass(Sp, zG))uSp	A[a/x] ∈ D

This is derived by induction on N(u). Since s is neutral, it is enough to show
that all its immediate reducts are in D. These are of two possible forms
a) s1 = ass(Sp, zG)[u/v] = ass(Sp, zG). Because this is neutral and normal,

s1 is in D, as required.
b) s2 = app(abstract vA[a/x]. , ass(Sp, zG))u′Sp
A[a/x] where u �1 u′, so

N(u′) < N(u) and this is in D by the induction hypothesis.
If (8.8) holds, then the term r = select (t) in x : s.yA.app(g, y) must be in
D. Because N(r) ≥ N(t), t is strongly normalizable, as required.

CR2 Assume t is in CSp
∃x:s•A. If t is immediately reducible to t′, then select (t) in
.x : s.yAapp(g, y) is immediately reducible to select (t′) in x : s.yA.app(g, y).
Thus we have that t′ is in CSp
∃x:s•A by property CR2 for D.

CR3 Assume t is a neutral proof-term such that every immediate reduct t′ of t
is in CSp
∃x:s•A. The proof-term select (t′) in x : s.yA.app(g, y) is therefore
in D. We are required to prove select (t) in x : s.yA.app(g, y) is in D.
We can rephrase this requirement as follows. We define h to denote app(g, y),
so that h is in D. We need to prove r = select (t) in x : s.yA.h is in D, given
that the proof-term select (t′) in x : s.yA.app(g, y) is in D for any t �1 t′.
We proceed by induction on N(h). Since r is neutral, it is enough to show
that all its immediate reducts are in D. Due to the fact that t is neutral,
these reducts can be of only two forms:
a) The first possible form is select (t′) in x : s.yA.h where t �1 t′. This

proof-term is in D by hypothesis.
b) The second possible form is r2 = select (t) in x : s.yA.h′ where h �1 h′.

By the property CR2 for D, it is true that h′ ∈ D and N(h′) < N(h).
Also, if t′ is an immediate reduct of t, then select (t′) in x : s.yA.h′ is
an immediate reduct of select (t′) in x : s.yA.h ∈ D and therefore is in
D. So, r2 is in D by the induction hypothesis.

This last case concludes the proof. ��
We now show that every proof-term corresponding to an SSL proof is

strongly normalizable. We do this by first showing that such proof-terms are
always contained in a CR (Theorem 8.2.9). Strong normalization follows as a
simple corollary (Corollary 8.2.1).

Theorem 8.2.9 (Strong normalization for SSL proofs). Each derivable
proof-term f of type Sp �A is in CSp
A.
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Proof. We adapt the proof of strong normalization for intuitionistic logic given
by Crossley and Shepherdson in [CS93]. The adaptation is straightforward:
additional complication is due to the additional proof-terms corresponding to
structural proofs.

We proceed by induction on the structure of f . To aid the derivation, we
strengthen the induction hypothesis to the following:

Let z̄ = z1, . . . , zs be a list of distinct individual variables, t̄ = t1, . . . , ts
a list of individual terms, ȳ = yG1

1 , . . . yGr
r a list of distinct proof-

term variables, and p̄′ = p
Sp 1
G′

1
1 , . . . p

Sp r
G′
r

k a list of proof-terms in
CSp 1
G′

1
, . . . CSp r
G′

r
respectively, where each G′

i = Gi[t̄/z̄] so that

Sig(Gi) ⊆ Sig(Sp i) and Sig(G′
i) ⊆ Sig(Sp i). Let ȳ′ = y

G′
1

1 , . . . , y
G′

r
r .

Then,
(fSp
A)[t̄/z̄][p̄′/ȳ′]

is a proof-term of type Sp �A′ and is in CSp
A′ , where A′ = A[t̄/z̄].

Without loss of generality, we will assume bound variables of f are not equiva-
lent to any ȳ′ or any variable in p̄′.

(Base case). If f is an assumption ass(Sp, xA), then either

• x is not yi, for every i ∈ {1, . . . , r}, and so fSp
A[t̄/z̄][p̄′/ȳ′] is ass(Sp, xA′
),

which belongs to CSp
A′ , or
• x is yi, some i ∈ {1, . . . , r}, and so fSp
A[t̄/z̄][p̄′/ȳ′] is pSp
A′

i , which belongs
to CSp
A′ by the induction hypothesis.

(⇒-I). We are required to prove that, if fSp
B satisfies the induction hy-
pothesis, then so does (abstract xA. fSp
B). This is equivalent to proving r is in
CSp
A′⇒B′ , where r is defined to be (abstract xA. fSp
B [t̄/z̄][p̄′/ȳ′]).

Observe that, by definition, r can be rewritten abstract xA′
. (fSp	B [t̄/z̄])[p̄′/ȳ′].

We can rewrite this again as

r = abstract xA′
. (fSp
B [t̄/z̄][p̄′/ȳ′])

because we can assume xA′
does not occur in ȳ′ or p̄′.

We define gSp
B′
to be fSp
B [t̄/z̄][p̄′/ȳ′], so that r = abstract xA′

. gSp
B′
.

Noting that CSp
A′⇒B′ = CSp
A′ ⇒ CSp
B′ , we have to show that, for all
u ∈ CSp
A′ , it is true that app(r, u) = app(abstract xA′

. gSp
B′
, u) ∈ CSp
B′ .

By the induction hypothesis,

fSp
B [t̄/z̄][p̄′ :: q/ȳ′ :: xA′
] ∈ CSp
B′

since xA′
is not equivalent to any ȳ′ or any variable p̄′. Consequently, we may

infer
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fSp
B [t̄/z̄][p̄′ :: q/ȳ′ :: xA′
] ∈ CSp
B′ since xA′

is not
equivalent to any ȳ′

or any variable p̄′.
⇒ fSp
B [t̄/z̄][p̄′/ȳ′][q/xA′

] ∈ CSp
B′ because CSp
B′

is closed under
equivalence of
proof-terms.

⇒ fSp
B [t̄/z̄][p̄′/ȳ′][q/xA′
] ∈ CSp
B′

gSp
B′
[q/xA′

] ∈ CSp
B′

(8.9)

for any q ∈ CSp
A′ .
The proof-term app(r, u) is neutral. So, by condition CR3 for CSp
B′ , it is

enough to show that all immediate reducts are in CSp
B′ .
We proceed to prove this by subsidiary induction on N(g)+N(u), given that

gSp
B′ ∈ CSp
B′

and
uSp
A′ ∈ CSp
A′

In the base case, when N(g)+N(u) = 0, app(r, u) is in normal form. Because
app(r, u) is neutral, app(r, u) must be in CSp
B′ by Lemma 8.2.3.

For the subsidiary induction step, consider that the reducts of r can be of
only three possible forms:

1. The first possible reduct form is app(abstract xA′
. gSp
B′

, u′), where u�1 u′.
So, by CR2, u′ ∈ CSp
A′ . Also, N(u′) < N(u). So, the reduct is in CSp
B′

by the subsidiary induction hypothesis.
2. The second possible reduct form is app(abstract xA′

. g′Sp
B′
, u), where g �1

g′. So, by CR2, g′ ∈ CSp
B′ . Also, N(g′) < N(g). This reduct is in CSp
B′

by the subsidiary induction hypothesis.
3. The third possible form is gSp
B′

[u/xSp
A′
], which is in CSp
B′ , by (8.9).

(⇒-E). We have to show that app(fSp
A⇒B , gSp
A) satisfies the induction
hypothesis. That is, we must show that app(fSp	A⇒B [t̄/z̄][p̄′/ȳ′], gSp	A[t̄/z̄][p̄′/ȳ′])
is in CSp	B′ . This follows from the induction hypothesis for fSp
A⇒B [t̄/z̄][p̄′/ȳ′]
and gSp
A[t̄/z̄][p̄′/ȳ′] and the definition of CSp
A′⇒B′ .

(∧-I). We define r to be 〈fSp
A[t̄/z̄][p̄′/ȳ′], gSp
B [t̄/z̄][p̄′/ȳ′]〉We are required
to prove r is in CSp
A′∧B′ . That is, we must prove that fst(r) ∈ CSp
A′ and
snd(r) ∈ CSp
B′ .

Because fst(r) and snd(r) are neutral, we can proceed in a similar way
to the case for (⇒-I) above, showing all immediate reducts of these proof-
terms are in CSp
A′ and CSp
B′ , respectively. We use a subsidiary induction on
N(fSp
A[t̄/z̄][p̄′/ȳ′]) + N(gSp
B [t̄/z̄][p̄′/ȳ′]).

For instance, in the case of fst(r) one of the possible immediate reducts of
fst(r) is fSp
A[t̄/z̄][p̄′/ȳ′]. This is in CSp
A′ , by the main induction hypothesis.
The other immediate reducts obtained by reducing f or g follow easily.
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(∧-Ei) (i = 1, 2). When i = 1, we have to show r = fst(fSp
A∧B)[t̄/z̄][p̄′/ȳ′]
is in CSp
A′ . This follows from the definition of CSp
(A′∧B′) and the inductive as-
sumption that fSp
(A∧B)[t̄/z̄][p̄′/ȳ′] is in CSp
A′∧B′ . We proceed similarly when
i = 2 for snd(r).

(∀-I). We show that (use x : s. fSp
A)[t̄/z̄][p̄′/ȳ′] is in CSp
∀x:s•A′ . We can
rewrite the proof-term as use x : s. (fSp
A[t̄/z̄][p̄′/ȳ′]), where x does not occur
in p̄′, nor in the types of ȳ′.

So, we are required to prove that, for all t0 : s ∈ Term(Sig(Sp), V ar),

r = specific(use x : s. fSp
A[t̄/z̄][p̄′/ȳ′], t0)

is in CA′[t0/x]. This is proved by induction on N(fSp
A[t̄/z̄][p̄′/ȳ′]).
Since r is neutral we need only consider its immediate reducts. These are of

two forms:

1. The first form of reduct derives from a reduction of f . By induction on
N(f [t̄/z̄][p̄′/ȳ′]) we can show that this reduct is in CA′[t0/x] as required.

2. The second reduct is of the form f [t̄/z̄][p̄′/ȳ′][t0/x]. This may be rewritten

f [t̄/z̄][p̄′/ȳ′][t0/x]

Because x : s does not occur in p̄′ or ȳ′, this proof-term is equal to

f [t̄/z̄][x/t0][p̄′/ȳ′]Sp
A′[t0/x]

which is in CSp
A′[t0/x] by the main induction hypothesis.

(∀-E). We have to show specific(fSp
∀x:s•A[t̄/z̄][p̄′/ȳ′], t0) is in CSp
A′[t0/x] if,
for all t0 : s,

fSp
∀x.A′
[t̄/z̄][p̄′/ȳ′] ∈ C∀x:s•A′

This follows from the definition of CSp
∀x:s•A′ .
(∨-I1). We have to show inl(fSp
A)[t̄/z̄][p̄′/ȳ′]Sp
A′∨B′

is in CSp
A′∨B′ , as-
suming that fSp
A[t̄/z̄][p̄′/ȳ′] is in CSp
A′ .

Take arbitrary types (Sp � C), all CR C of type (Sp � C), and proof-terms
f1, f2 in CSp
A′⇒C and CSp
B′⇒C respectively (with xSp
A′

not free in f1 and
ySp
B′

not free in f2). We must prove that the proof-term

r = case inl(fSp
A[t̄/z̄][p̄′/ȳ′]) of inl(xA′
).app(f1, ass(Sp, xA′

)),

inr(yB′
).app(f2, ass(Sp, xB′

))

is in C.
We reformulate this requirement. First we define g1 to be app(f1, x), g2 to

be app(f2, y) and g3 to be f [t̄/z̄][p̄′/ȳ′]. We have to show that the proof-term

r = case inl(g3) of inl(x).g1, inr(y).g2

is in C, given that g1 and g2 are in CSp
C , g3 is in CSp
A′ , and g1[g3/x] is in C.
(Note that g1[g3/x] is app(f1, g3), which is in C by the definition of CSp
A′ ⇒ C.)
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We proceed by subsidiary induction on N(G1) + N(G2) + N(G3), using the
fact that r is neutral, examining immediate reducts of r.

There are four possible immediate reducts of r.
The first possible immediate reduct of r is of the form g1[g3/x]. This is in

C by hypothesis.
Each alternative possible immediate reducts r′ is obtained by reducing one

of g1, g2 or g3. Observe that N(r′) is less than N(g1) + N(g2) + N(g3). So we
only have to verify that each reduct will still leave

1. the reduced g1 or g2 in CSp
C or the reduced g3 in CSp
A′ , and
2. the reduced version of g1[g3/x] still in C.

The first of these requirements follows by CR2 for CSp
C and CSp
A′ . The second
follows by CR2 for C by the following reasoning. If g′

3 is an immediate reduct of
g3, then g1[g′

3/x] is a (not necessarily immediate) reduct of g1[g3/x]. Also, if g′
1

is an immediate reduct of g1 then g′
1[g3/x] is an immediate reduct of g1[g3/x].

This concludes the proof for this subsidiary induction and for this case.
(∨-I2). Similar to the previous case.
(∨-E). We have to show

case hSp
A∨B [t̄/z̄][p̄′/ȳ′] of inl(xA′
).fSp
G

1 [t̄/z̄][p̄′/ȳ′], inr(yB′
).fSp
G

2 [t̄/z̄][p̄′/ȳ′]

is in CSp
G′ . This proof-term is neutral. As in previous cases, it is enough to
show all immediate reducts of the proof-term are in CSp
G′ .

We proceed by induction on

N(hSp
A∨B [t̄/z̄][p̄′/ȳ′]) + N(fSp
G
1 [t̄/z̄][p̄′/ȳ′]) + N(fSp
G

2 [t̄/z̄][p̄′/ȳ′])

There are several possible immediate reducts. The reducts obtained by re-
ducing h, f1 or f2 are then in CSp
G′ by this subsidiary induction. As a conse-
quence,

case hSp
A∨B [t̄/z̄][p̄′/ȳ′] of inl(xA′
).fSp
G

1 [t̄/z̄][p̄′/ȳ′], inr(yB′
).fSp
G

2 [t̄/z̄][p̄′/ȳ′]

is in CSp
G′ .
There are two further possible reducts, depending on whether h is inl(k) or

inr(k). We deal with the former case as the latter is similar. If h is inl(k) there
is another immediate reduct,

fSp
G
1 [t̄/z̄][p̄′/ȳ′][(k[t̄/z̄][p̄′/ȳ′])/x]

Because we can assume xA′
is not equivalent to any free proof-term variable in

ȳ′, this proof-term is equivalent to

fSp
G
1 [t̄/z̄][p̄′ :: (k[t̄/z̄][p̄′/ȳ′])/ȳ′ :: xSp
A′

]

which is in CSp
G′ , the main induction hypothesis, as required.
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(∃-I). A proof-term obtained by (∃-I) is of the form show(u, fSp�A[u/x])Sp	∃x:s•A.
We can assume that z̄ denotes the list of all free individual variables in this
proof-term. We write u0 = u[t̄/z̄].

So, we have to show show(u0, f
Sp
A[u/x][t̄/z̄][p̄′/ȳ′])Sp
∃x:s•A′

is in CSp
∃x:s•A′

Take any type (Sp �G) with x not free in G, any CR D of type (Sp �G), and
any proof-term g of type (Sp �A′ ⇒ G) satisfying, for any individual term u of
sort s,

g[u/x] ∈ CSp
A′[u/x] ⇒ D

We must show that the proof-term

r = select (show(u0, f
Sp
A[u/x])[t̄/z̄][p̄′/ȳ′]) in x : s.yA′

.app(g, y)Sp
G

is in D.
As in previous cases, we reformulate the requirement.
First we set g1 to be app(g, y) and f1 to be fSp
A[u/x][t̄/z̄][p̄′/ȳ′]. So we

can easily see that g1 is in D, f1 is in CSp
A′[u0/x], x is not free in any type
superscripts in g1 (except perhaps ySp
A′

) and g1[u0/x][f1/y] is in D.
We are required to prove r = select (show(u0, f1)) in x : s.y.g1 is in D.
We prove this by a subsidiary induction in N(g1) + N(f1). As r is neutral

we need only prove that its immediate reducts are in D. These reducts can be
of three kinds:

1. The first form is r′
1 = select (show(u0, f1)) in x : s.yA′

.g′
1 where g′

1 is an
immediate reduct of g1. Since N(g′

1) < N(g1), the subsidiary induction
hypothesis tells us that this is in D, provided that g′

1[u0/x][f1/y] is in
D. To see this, we observe that g′

1[u0/x][f1/y] is an immediate reduct of
g1[u0/x][f1/y], which is in D by the hypothesis.

2. The second form is r′
2 = select (show(u0, f

′
1)) in x : s.yA′

.g1 where f ′
1 is

an immediate reduct of f1. The subsidiary induction hypothesis tells us
that this is in D, because g1[u0/x][f1/y] is in D. This follows from CR2
for D, using the easily verifiable fact that g1[u0/x][f ′

1/y] is a reduct of
g1[u0/x][f1/y].

3. The third form is r′
3 = g1[u0/x][f1/y], which is in D by the hypothesis.

(∃-E). A proof-term obtained by (∃-E) is of the form

(select (hSp
∃x:s•A) in x : s.yA.gSp
G)Sp
G

where x : s is not free in G nor in any type of any free variable of g. So, we have
to show that r = (select (hSp
∃x:s•A[t̄/z̄][p̄′/ȳ′]) in x : s.yA′

.gSp
G[t̄/z̄][p̄′/ȳ′] is
in CSp
G′ . We assume that the ȳ′ do not have x : s occurring free in the type
of any of their free variables.

Since r is neutral, it is enough to show its immediate reducts are in CSp
G′ .
This is proved by induction on N(hSp	∃x:s•A[t̄/z̄][p̄′/ȳ′]) + N(gSp	G[t̄/z̄][p̄′/ȳ′]).
The reducts obtained by reducing g or h are in CSp
G′ by the subsidiary

induction hypothesis.
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If h is of the form show(u : s, f
Sp
A[u/x]
1 ) there is another reduct,

gSp
G[t̄/z̄][p̄′/ȳ′][u0/x][(f1[t̄/z̄][p̄′/ȳ′])/y]

where u0 = u[t̄/z̄]. This proof-term is equivalent to

r′ = gSp
G[t̄ :: u0/z̄ :: x][p̄′ :: (f1[t̄/z̄][p̄′/ȳ′])/ȳ′ :: y]

because (as in the case of (∀-I) above) the t̄ do not contain x free, and x does
not occur free in the type of any z̄ which is free in g, or of any of the p̄′. We are
done, as the proof-term r′Sp
A′

is in CSp
A′ by the main induction hypothesis.
(⊥-E). We must show r = abort(aSp
⊥, A)Sp
A[t̄/z̄][p̄′/ȳ′] is in CSp
A′ . We

know that aSp
⊥ is in CSp
⊥. We can rewrite r as r = abort(a[t̄/z̄][p̄′/ȳ′]Sp	⊥)Sp	A′
.

We can prove this is in CSp
A′ , by induction on N(a[t̄/z̄][p̄′/ȳ′]l
⊥) using CR3
for CSp
A′ and the fact that r is neutral.

(trans). We must show r = (ρ • cSp
A)[t̄/z̄][p̄′/ȳ′] is in C(Sp with ρ)
ρ(A)′ ,
where ρ(A)′ = ρ(A)[t̄/z̄]. By the induction hypothesis, cSp
A[t̄/z̄][p̄′/ȳ′] is in
CSp.

As this proof-term is neutral, it is enough to show that every immediate
reduct r �1 r′ is in C(Sp with ρ)
ρ(A)′ . This is done by a subsidiary induction on
N(c). In the base case, N(c) = 0, and so (ρ • cSp
A)[t̄/z̄][p̄′/ȳ′] is in normal form
and must be in C(Sp 1 with ρ)
ρ(A)′

For the inductive step, we reason as follows.
Suppose r′ = (ρ • c′) where c[t̄/z̄][p̄′/ȳ′]�1 c′. In this case, N(c′) < N(c) and

we are done.
Otherwise, c must have one of the following forms: abstract uB . dSp
D,

(use x : s. dSp
D), (〈dSp
D, eSp
E〉), inl(dSp
D) or inr(dSp
D). In each of these
cases r′ must be obtained by a structural reduction rule and take the form

abstract uρ(B). (ρ • dSp
D)[t̄/z̄][p̄′/ȳ′]
use x : ρ(s). (ρ • dSp
D)[t̄/z̄][p̄′/ȳ′]
show(ρ(t), (ρ • dSp
D))[t̄/z̄][p̄′/ȳ′]
〈(ρ • dSp
D), (ρ • eSp
E)〉[t̄/z̄][p̄′/ȳ′]

inl((ρ • dSp
D))[t̄/z̄][p̄′/ȳ′]
inr((ρ • dSp
D))[t̄/z̄][p̄′/ȳ′]

respectively. Each of these is in C(Sp with ρ)
A by the main induction hypothesis.
(union1). We must show r = union1(cSp 1
A,Sp 2)[t̄/z̄][p̄′/ȳ′] is in

C(Sp 1 and Sp 2)
A′ , given that, by the induction hypothesis, c[t̄/z̄][p̄′/ȳ′]Sp 1
A′

is in CSp 1.
As this proof-term is neutral, it is enough to show that every immediate

reduct r �1 r′ is in C(Sp 1 and Sp 2))
A. This is done by a subsidiary induction on
N(c). For the base case N(c) = 0, and so union1(cSp 1
A,Sp 2)[t̄/z̄][p̄′/ȳ′] is in
normal form and must be in CSp 1 and Sp 2
A′

For the inductive step, we reason as follows.
Suppose r′ = union1(c′,Sp 2) where c[t̄/z̄][p̄′/ȳ′] �1 c′. In this case, N(c′) <

N(c) and we are done.
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Otherwise, c must take one of the following forms: abstract uA. dSp 1
B ,
(use x : s. dSp 1
B), (〈dSp 1
B , eSp 1
B〉), inl(dSp 1
B) or inr(dSp 1
B). In each of
these cases r′ must be obtained by a structural reduction rule and take the form

abstract uA. union1(dSp 1
B ,Sp 2)[t̄/z̄][p̄′/ȳ′]
use x : s. union1(dSp 1
B)[t̄/z̄][p̄′/ȳ′]

show(t, union1(dSp 1
B ,Sp 2))[t̄/z̄][p̄′/ȳ′]
〈union1(dSp 1
B ,Sp 2), union1(eSp 1
C ,Sp 2)〉[t̄/z̄][p̄′/ȳ′]

inl(union1(dSp 1
B ,Sp 2))[t̄/z̄][p̄′/ȳ′]
inr(union1(dSp 1
B ,Sp 2))[t̄/z̄][p̄′/ȳ′]

respectively. Each of these is in CSp 1 and Sp 2
A by the main induction hypoth-
esis.

The cases for proof-terms for (union1), (ext1) and (ext2) and (hide) are
similar. ��

Strong normalization for our system follows at once from this theorem.

Corollary 8.2.1. Each proof-term is strongly normalizing.

Proof. Using Theorem 8.2.9 and CR1. ��

8.3 The Church–Rosser Property

The Church–Rosser property says that divergent proof normalization sequences
always eventually converge to yield the same proof. We have already discussed
the Church–Rosser property for the type theories of intuitionistic logic (Chapter
2, Part II) and intuitionistic Hoare logic (Chapter 5, Part III).

As in the previous parts of this monograph we formalize this notion using the
Curry–Howard correspondence, proving the Church–Rosser property in terms
of the logical type theory and the normalization relation �SSL. We did not
include detailed proofs of the property for the previous two logics discussed. The
property is well known for intuitionistic logic. Because intuitionistic Hoare logic
did not add any new normalizing reduction rules to proof-terms besides those of
intuitionistic logic, the property followed trivially for intuitionistic Hoare logic,

However, the reduction rules for SSL are a non-trivial extension of those for
intuitionistic logic, and so it is of interest to show the Church–Rosser property
holds for this new logic. We do this by adapting the proof presented in [Bar84,
pp. 59–62] for intuitionistic logic.

We define the diamond property of relations as before.

Definition 8.3.1. A relation # over a set S satisfies the diamond property
when

for all x, x1, x2 in S (x#x1 and x#x2 ⇒ there is a x3 such that
(x1#x3 and x2#x3))
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a �∗ a
a �∗ a′ ⇒ abstract x. a �∗ abstract x. a′

a �∗ a′ and b �∗ b′ ⇒ app(a, b) �∗ app(a′, b′)
a �∗ a′ ⇒ use i. a �∗ use i. a′

a �∗ a′ ⇒ show(v, a) �∗ show(v, a′)
a �∗ a′ ⇒ specific(a, v) �∗ specific(a′, v)

a �∗ a′ and b �∗ b′ ⇒ 〈a, b〉 �∗ 〈a′, b′〉
a �∗ a′ ⇒ fst(a) �∗ fst(a′)
b �∗ b′ ⇒ snd(b) �∗ snd(b′)
a �∗ a′ ⇒ inl(a) �∗ inl(a′)
b �∗ b′ ⇒ inr(b) �∗ inr(b′)

a �∗ a′ and b �∗ b′

and c �∗ c′ ⇒ case a of inl(x).b, inr(y).c �∗ case a′ of inl(x).b′, inr(y).c′

a �∗ a′ ⇒ abort(a) �∗ abort(a′)
a �∗ a′ ⇒ show(v, a) �∗ show(v, a′)

a �∗ a′ and b �∗ b′ ⇒ select (a) in x.y.b �∗ select (a′) in x.y.b′

a �∗ a′ ⇒ union1(a,Sp) �∗ union1(a′,Sp)
a �∗ a′ ⇒ union2(a,Sp) �∗ union2(a′,Sp)
a �∗ a′ ⇒ ext1(a,Sp) �∗ ext1(a′,Sp)
a �∗ a′ ⇒ ext2(a,Sp) �∗ ext2(a′,Sp)
a �∗ a′ ⇒ hide(a, SL) �∗ ext2(a′, SL)
a �∗ a′ ⇒ ρ • a �∗ ρ • a′

a �∗ a′ and b �∗ b′ ⇒ app(abstract x. a, b) �∗ a′[b′/x]
a �∗ a′ ⇒ specific(use x : s. a, v) �∗ a′[v/x]
a �∗ a′ ⇒ fst(〈a, b〉) �∗ a′

b �∗ b′ ⇒ snd(〈a, b〉) �∗ b′

a �∗ a′ and b �∗ b′ ⇒ case inl(a) of inl(x).b, inr(y).c �∗ b′[a′/x]
a �∗ a′ and c �∗ c′ ⇒ case inr(a) of inl(x).b, inr(y).c �∗ c′[a′/y]
a �∗ a′ and b �∗ b′ ⇒ select (show(v, a)) in x.y.b �∗ b′[a′/x][v/y]

Fig. 8.12. Axioms defining �∗.

We also remind the reader of the following lemma.

Lemma 8.3.1. Let # be a binary relation over a set and let #̂ be its transitive
closure. If # satisfies the diamond property then so does #̂.

Definition 8.3.2 (Church–Rosser property). Formally, we say that our
normalization reduction rules satisfy the Church–Rosser property when �̂SSL

satisfies the diamond property.

We define the relation �∗ by the axioms of Figs. 8.12 and 8.13. This relation
is a single step reflexive closure of the rules presented in Figs. 8.7 and 8.9.
Consequently, this relation (when considered as a set of pairs) is a subset of
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d �∗ d′ ⇒ S(abstract uA. d) �∗ abstract uA. S(d′)
d �∗ d′ ⇒ S(use x : s. d) �∗ use x : s. S(d′)
d �∗ d′ ⇒ S(show(t, d)) �∗ show(t, S(d′))

d �∗ d′ and e �∗ e′ ⇒ S(〈d, e〉) �∗ 〈S(d′), S(e′)〉
d �∗ d′ ⇒ S(inl(d)) �∗ inl(S(d′))
d �∗ d′ ⇒ S(inr(d)) �∗ inr(S(d′))

where S(p) denotes the following possible operations over proof-term
p: union1(p,Sp), union2(p,Sp) ext1(p,Sp), ext2(p,Sp).

d �∗ d′ ⇒ ρ • (abstract uA. d) �∗ abstract uρ(A). S(d′)
d �∗ d′ ⇒ ρ • (use x : s. d) �∗ use x : ρ(s). (ρ • d′)
d �∗ d′ ⇒ ρ • (show(t, d)) �∗ show(ρ(t), (ρ • d′))

d �∗ d′ and e �∗ e′ ⇒ ρ • (〈d, e〉) �∗ 〈(ρ • d′), (ρ • e′)〉
d �∗ d′ ⇒ ρ • (inl(d)) �∗ inl((ρ • d′))
d �∗ d′ ⇒ ρ • (inr(d)) �∗ inr((ρ • d′))
d �∗ d′ ⇒ hide(abstract uA. d, SL) �∗ abstract urho(A). S(d′)
d �∗ d′ ⇒ hide(use x : s. d, SL) �∗ use x : s. hide(d′, SL)

d �∗ d′ and e �∗ e′ ⇒ hide(〈d, e〉, SL) �∗ 〈hide(d′, SL), hide(e′, SL)〉
d �∗ d′ ⇒ hide(inl(d), SL) �∗ inl(hide(d′, SL))
d �∗ d′ ⇒ hide(inr(d), SL) �∗ inr(hide(d′, SL))

Fig. 8.13. Axioms defining �∗ (cont.).

the relation �SSL and it can be easily verified that �SSL is the transitive closure
of �∗.

Thus, by Lemma 8.3.1, we can show �̂SSL satisfies the Church–Rosser prop-
erty by proving that �∗ satisfies the diamond property.

First, we establish the following lemma.

Lemma 8.3.2. Let x be a proof-term variable, y be an individual term variable,
and assume v is an individual term of the same sort as y.

If a �∗ a′ and b �∗ b′ then

1. a[v/y] �∗ a′[v/y]
2. a[b/x] �∗ a′[b′/x]
3. a[b/x][v/y] �∗ a′[b′/x][v/y]

Proof. We prove this by induction on the definition of a �∗ a′. The first item
is straightforward. The third item follows from the second item, which we now
prove.

Case: Assume that a �∗ a′ is a �∗ a.
Then we must show that a[b/x]�∗ a[b′/x]. This follows by subsidiary induc-

tion over the structure of a:

• Assume that a is a proof-term variable x. Then a[b′/x] is b′ and a[b/x] �∗
a[b′/x] is the same as saying b �∗ b′. This is true, so we are done.
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• Assume a is the proof-term variable z, not equivalent to x. Then both a[b/x]
and a[b′/x] are equivalent to y. Thus a[b/x] �∗ a[b′/x] is the same as saying
y �∗ y. This is true, so the we are done.

• Assume a is the proof-term app(p, q). Then a[b/x] is equivalent to
app(p[b/x], q[b/x]) and a[b′/x] is equivalent to app(p[b′/x], q[b′/x]). By the
induction hypothesis and the definition of �∗, we are done.

Case: Assume that a �∗ a′ is of the form (abstract z. p) �∗ (abstract z. p′),
and is a consequence of p �∗ p′.

By the induction hypothesis, it must be the case that p[b/x]�∗ p′[b′/x]. But
then abstract z. p[b/x] �∗ abstract z. p′[b′/x] holds, as required.

Case: Assume that a �∗ a′ is of the form app(p, q) �∗ app(p′, q′), and is a
consequence of p �∗ p′ and q �∗ q′. Then we know that a[b/x] is the same as
writing app(p[b/x], q[b/x]) �∗ app(p′[b′/x], q[b′/x]) by the induction hypothesis
and the definition of �∗ is a’[b’/x] as required.

Case: Assume that a�∗ a′ is of the form union1(p,Sp)�∗ union1(p′,Sp), and
is a consequence of p �∗ p′.

By the induction hypothesis, it must be the case that p[b/x]�∗ p′[b′/x]. But
then union1(p[b/x],Sp) �∗ union1(p′[b′/x],Sp) holds, as required.

Similar cases. We reason similarly (by the induction hypothesis and the
definition of �∗) for the cases when a �∗ a′ is of any of the following forms:

abstract x. p �∗ abstract x. p′

app(p, q) �∗ app(p′, q′)
use i. p �∗ use i. p′

specific(p, v) �∗ specific(p′, v)
〈p, q〉 �∗ 〈p′, q′〉
fst(p) �∗ fst(p′)

snd(q) �∗ snd(q′)
inl(p) �∗ inl(p′)
inr(q) �∗ inr(q′)

case p of inl(x).q, inr(y).r �∗ case p′ of inl(x).q′, inr(y).r′

show(v : s, p) �∗ show(v : s, p′)
select (p) in x.y : s.q �∗ select (p′) in x.y : s.q′

union2(p,Sp) �∗ union2(p′,Sp)
ext1(p,Sp) �∗ ext1(p′,Sp)
ext2(p,Sp) �∗ ext2(p′,Sp)
hide(p, SL) �∗ hide(p′, SL)

ρ • p �∗ ρ • p′

Case: Assume a �∗ a′ is app(abstract z. p, q) �∗ p′[q′/z] and is a direct
consequence of p �∗ p′ and q �∗ q′.

Then we reason as follows.
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a[b/x] is app(abstract z. (p[b/x]), q[b/x])
�∗ p′[b′/x][q′[b′/x]/z]

by the induction hypothesis and the definition of �∗
is p′[q′/z][b′/x]
is a′[b′/x]

as required.
Case: Assume a �∗ a′ is specific(use z : s. p, v) �∗ p′[v/z] and is a direct

consequence of p �∗ p′.
Then we reason as follows.

a[b/x] is (specific(use x : s. p, v))[b/x]
�∗ p′[b′/x][v/z]

by the induction hypothesis and the definition of �∗
is a′[v/z][b′/x]
is a′[b′/x]

as required.
Case: Asssume a�∗a′ is fst(〈p, q〉)�∗p′ and is a direct consequence of p�∗p′.

Then we reason as follows.
a[b/x] is fst(〈p, q〉)[b/x]

�∗ p′[b′/x]
by the induction hypothesis and the definition of �∗

is a′[b′/x]

as required.
The case when a�∗ a′ is snd(〈p, q〉)�∗ q′, a consequence of q �∗ q′ is similar.
Case: Assume a �∗ a′ is (case inl(p) of inl(z1).q, inr(z2).r) �∗ q′[p′/z1] and

is a direct consequence of p �∗ p′ and q �∗ q′.
Then we reason as follows.

a[b/x] is (case inl(p) of inl(z1).q, inr(z2).r)[b/x]
�∗ q′[b′/x][p′[b′/x]/z1]

by the induction hypothesis and the definition of �∗
is q′[p′/z1][b′/x]
is a′[b′/x]

as required.
We proceed in a similar way for the case where a �∗ a′ is of the form

case inr(p) of inl(z1).q, inr(z2).r �∗ r′[p′/z2] and is a direct consequence of
p �∗ p′ and r �∗ r′.

Case: Assume a �∗ a′ is select (show(v, p)) in z.y.q �∗ p′[q′/z][v/y] and is a
direct consequence of p �∗ p′ and r �∗ r′.

Then we reason as follows.
a[b/x] is select (show(v, p)) in z.y.q[b/x]

�∗ p′[b′/x][q′[b′/x]/z][v/y]
by the induction hypothesis and the definition of �∗

is p′[q′/z][v/y][b′/x]
is a′[b′/x]
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as required.
Let S(p) denote any of the following following: union1(p,Sp), union2(p,Sp)

ext1(p,Sp), ext2(p,Sp).
Case: Assume a �∗ a′ is S(abstract uA. p) �∗ abstract uA. S(p′). and is a

direct consequence of p �∗ p′.
Then we reason as follows.

a[b/x] = S(abstract uA. p)[b/x]
�∗ abstract uA. S(p′[b′/x])

by the induction hypothesis and the definition of �∗
is a′[b′/x]

as required.
The remaining cases of the proof are similar. ��

Lemma 8.3.3. Let a, b, c, p, q and r be arbitrary well-typed proof-terms. Let
z1, z2, x be well-typed proof-term variables. Let y and i be individual variables
and let v be an arbitrary individual term. Then �∗ possesses the following prop-
erties.

1. It is the case that A implies B for the following cases
A B

use i : s. a �∗ b b is use i : s. a′ with a �∗ a′.
inl(a) �∗ b b is inl(a′) with a �∗ a′.
inr(a) �∗ b b is inr(a′) with a �∗ a′.

abstract x. a �∗ b b is abstract x. a′ with a �∗ a′.
〈a, c〉�∗ b b is 〈a′, b′〉 with a �∗ a′ and c �∗ c′.

show(v : s, a) �∗ b b is show(v : s, a′) with a �∗ a′.
abort(a) �∗ b b is abort(a′) with a �∗ a′.

2. app(a, b) �∗ c entails that either
• c is app(a′, b′) with a �∗ a′ and b �∗ b′, or
• a is abstract x. p and c is p′[b′/x] where p �∗ p′ and b �∗ b′.

3. specific(a, v : s) �∗ c entails that either
• c is specific(a′, v) with a �∗ a′, or
• a is use z : s. p and c is p′[v/z] where p �∗ p′.

4. fst(a) �∗ c entails that either
• c is fst(a′) with a �∗ a′, or
• a is 〈p, q〉 and c is p′ where p �∗ p′.

5. snd(a) �∗ c entails that either
• c is snd(a′) with a �∗ a′, or
• a is 〈p, q〉 and c is q′ where q �∗ q′.

6. case p of inl(z1).q, inr(z2).r �∗ c entails that either
• c is case p′ of inl(z1).q′, inr(z2).r′ with p �∗ p′, q �∗ q′ and r �∗ r′,
• p is inl(a) and c is q′[p′/z1] where p �∗ p′ and q �∗ q′, or
• p is inr(a) and c is q′[p′/z2] where p �∗ p′ and q �∗ q′.

7. select (p) in x.y.q �∗ c entails that either



290 8 Proof-theoretic Properties of SSL

• c is select (p′) in x.y.q′ with p �∗ p′, q �∗ q′, or
• p is show(v, a) and c is q′[p′/x][v/y] where p �∗ p′ and q �∗ q′.

8. Let S(a) denote the following possible operations over proof-term a:
union1(a,Sp), union2(a,Sp) ext1(a,Sp), ext2(a,Sp) or hide(a, SL). Then
S(a) �∗ c entails that either
• c = S(a′,Sp) with a �∗ a′

• c = abstract uA. S(a′) with a �∗ a′

• c = use x : s. S(a′) with a �∗ a′,
• c = show(t, S(a′)) with a�∗a′, provided S(a) does not denote hide(a, SL),
• c = 〈S(a′), S(b′)〉 with a �∗ a′ and b �∗ b′,
• c = inl(S(a′)) with a �∗ a′, or
• c = inr(S(a′)) with a �∗ a′.

9. ρ • a �∗ c entails that either
• c = ρ • a′ with a �∗ a′

• c = abstract uρ(A). ρ • (a′) with a �∗ a′

• c = use x : s. ρ • (a′) with a �∗ a′,
• c = show(ρ(t), ρ • (a′)) with a �∗ a′,
• c = 〈ρ • (a′), ρ • (b′)〉 with a �∗ a′ and b �∗ b′,
• c = inl(ρ • (a′)) with a �∗ a′, or
• c = inr(ρ • (a′)) with a �∗ a′.

Proof. By induction on the definition of �∗. ��

Theorem 8.3.3 (Church–Rosser property for SSL). The relation �∗ sat-
isfies the diamond property (and therefore �SSL, as the transitive closure of �∗,
satisfies the diamond property).

Proof. We proceed by induction on the definition of a �∗ a1. We show that for
all a �∗ a2 there is an a3 such that a1 �∗ a3 and a2 �∗ a3.

Case: Assume that a �∗ a1 is of the form a �∗ a. We may take a3 to be the
same as a2.

Case: Assume that a �∗ a1 is of the form app(p, q) �∗ app(p′, q′), and is a
consequence of p �∗ p′ and q �∗ q′. By Lemma 8.3.3 (2), there are two cases:

• a2 is app(p′′, q′′) with p �1 p′′ and q �1 q′′. Then, using the induction hy-
pothesis, we may take a3 to be app(p′′′, q′′′), where p′ �∗ p′′′ and p′′ �∗ p′′′

and similarly q′ �∗ q′′′ and q′′ �∗ q′′′.
• p is abstract x. p1 and a2 is p′′

1 [q′′/x] where p1 �∗ p′′
1 and q �∗ q′′. By Lemma

8.3.3 (1), it is the case that p′ is abstract x. p′
1 with p1�∗p′

1. By the induction
hypothesis, we can take a3 to be p′′′

1 [q′′′/x], where p′ �∗ p′′′ and p′′ �∗ p′′′

and similarly q′ �∗ q′′′ and q′′ �∗ q′′′.
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Case: Assume that a �∗ a1 is of the form specific(p, v) �∗ specific(p′, v), and
is a consequence of p �∗ p′.

By Lemma 8.3.3 (3), there are two cases:

• a2 is specific(p′′, v) with p �1 p′′. Then, using the induction hypothesis, we
may take a3 to be specific(p′′′, v), where p′ �∗ p′′′ and p′′ �∗ p′′′.

• p is show(v, p1) and a2 is p′′
1 [v/i] where p1 �∗ p′′

1 . By Lemma 8.3.3 (1), it is
the case that p′ is use i. p′

1 with p1 �∗ p′
1. By the induction hypothesis, we

can take a3 to be p′′′
1 [v/x], where p′ �∗ p′′′ and p′′ �∗ p′′′.

Case: Assume that a�∗a1 is of the form fst(p)�∗ fst(p′) and is a consequence
of p �∗ p′. By Lemma 8.3.3 (4), there are two cases.

• a2 is fst(p′′) with p �∗ p′′. Then, using the induction hypothesis, we may
take a3 is fst(p′′′), where p′ �∗ p′′′ and p′′ �∗ p′′′.

• p is 〈p1, q〉 and a2 is p′′
1 with p1 �∗ p′′

1 . By Lemma 8.3.3 (1). Note that
p′ must be of the form 〈p′

1, q
′〉 with p1 �∗ p′

1 and q �∗ q′. Then, by
the induction hypothesis, we can take a3 as p′′′

1 with p′
1 �∗ p′′′

1 (so that
fst(p′) is fst(〈p′

1, q
′〉) �∗ p′′′

1 ) and p′′ �∗ p′′′
1 .

We proceed similarly for when a �∗ a1 is of the form snd(p) �∗ snd(p′) and
is a consequence of p �∗ p′.

Case: Assume that a �∗ a1 is of the form

(case p of inl(x).q, inr(y).r) �∗ (case p′ of inl(x).q′, inr(y).r′)

and is a consequence of p �∗ p′, q �∗ q′ and r �∗ r′. By Lemma 8.3.3 (6), there
are three cases.

• a2 is (case p′′ of inl(x).q′′, inr(y).r′′) with p�1 p′′, q�1 q′′ and r�1 r′′. Then,
using the induction hypothesis, we may take a3 to be
(case p′′′ of inl(x).q′′′, inr(y).r′′′), where p′�∗p′′′, p′′�∗p′′′, q′�∗q′′′, q′′�∗q′′′,
r′ �∗ r′′′ and r′′ �∗ r′′′.

• p is inl(p1) and a2 is q′′[p′′
1/x] where p1 �∗ p′′

1 . By Lemma 8.3.3 (1), it is the
case that p′ is inl(p′

1) with p1 �∗ p′
1. Then, by the induction hypothesis, we

can take a3 to be q′′′[p′′′
1 /x], where p′ �∗ p′′′, p′′ �∗ p′′′, q′ �∗ q′′′ and q′′ �∗ q′′′.

• p is inr(p1) and a2 is r′′[p′′
1/y] where p1 �∗ p′′

1 and r �∗ r′′. By Lemma 8.3.3
(1), it is the case that p′ is inr(p′

1) with p1 �∗ p′
1. Then, by the induction

hypothesis, we can take a3 to be r′′′[p′′′
1 /y], where p′�∗p′′′, p′′�∗p′′′, r′�∗r′′′

and r′′ �∗ r′′′.

Case: Assume that a�∗a1 is of the form select (p) in x.y.q�∗select (p′) in x.y.q′,
and is a consequence of p �∗ p′ and q �∗ q′. By Lemma 8.3.3 (7), there are two
cases.
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• a2 is select (p′′) in x.y.q′′ with p�1p′′ and q�1 q′′. Then, using the induction
hypothesis, we may take a3 is select (p′′′) in x.y.q′′′, where p′�∗p′′′, p′′�∗p′′′,
q′ �∗ q′′′, q′′ �∗ q′′′.

• p is show(v, p1) and a2 is q′′[p′′
1/x][v/y] where p1 �∗ p′′

1 . By Lemma 8.3.3 (1),
it is the case that that p′ is show(v, p′

1) with p1�∗p′
1. Then, by the induction

hypothesis, we can take a3 to be q′′′[p′′′
1 /x][v/y], where p′ �∗ p′′′, p′′ �∗ p′′′,

q′ �∗ q′′′ and q′′ �∗ q′′′.

We proceed similarly for the cases where a �∗ a1 is of the form

(abstract z. p) �∗ (abstract z. p′)

or
use i. p �∗ use i. p′

a consequence of p �∗ p′.

Case: Assume that a �∗ a1 is of the form specific(p, v) �∗ specific(p′, v),
and is a consequence of p �∗ p′. Then a2 is specific(p′′, v). Using the induction
hypothesis and Lemma 8.3.3 (1), we can take a3 is specific(p′′′, v), where p′�∗p′′′

and p′′ �∗ p′′′.
Similar cases. The cases when a �∗ a1 is of the form

〈a, b〉 �∗ 〈a′, b′〉,
inl(a) �∗ inl(a′),
inr(b) �∗ inr(b′),

show(v, a) �∗ show(v, a′)

follow similarly (by applications of the induction hypothesis and Lemma 8.3.3
(1)).

Case: Assume that a �∗ a1 is of the form app(abstract x. p, q) �∗ p′[q′/x]
and is a consequence of p �∗ p′ and q �∗ q′. By Lemma 8.3.3 (2) we know that
either

• a2 is app(abstract x. p′′, q′′) with p�∗p′′ and q�∗q′′. By induction hypothesis
there are proof-terms p′′′ and q′′′ with p′ �∗ p′′′ and p′′ �∗ p′′′ and similarly
q′ �∗ q′′′ and q′′ �∗ q′′′. By Lemma 8.3.2 (1) we can take a3 to be p′′′[q′′′/x].

• a2 is p′′[q′′/x] where p �∗ p′′ and q �∗ q′′. Then, using the induction hy-
pothesis, we can take a3 to be p′′′[q′′′/x] where p′ �∗ p′′′ and p′′ �∗ p′′′ and
similarly q′ �∗ q′′′ and q′′ �∗ q′′′.

Case: Assume a �∗ a1 is specific(use z : s. p, v) �∗ p′[v/z] and is a direct
consequence of p �∗ p′. Then, by Lemma 8.3.3 (3) we know that either

• a2 is specific(use z : s. p′′, v) with p �∗ p′′. By induction hypothesis there is
a proof-term p′′′ with p′ �∗ p′′′ and p′′ �∗ p′′′. Then, by Lemma 8.3.2 (1) we
can take a3 to be p′′′[v/z].
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• a2 is p′′[v/z] where p �∗ p′′. Then, using the induction hypothesis, we can
take a3 to be p′′′[v/z] where p′ �∗ p′′′ and p′′ �∗ p′′′.

Case: Asssume a �∗ a1 is fst(〈p, q〉) �∗ p′ and is a direct consequence of
p �∗ p′. Then, by Lemma 8.3.3 (4) we know that either:

• a2 is fst(〈p′′, q′′〉) with p�∗p′′ and q�∗p′′. By the induction hypothesis there
are proof-terms p′′′ and q′′′ such that p′ �∗ p′′′ and p′′ �∗ p′′′ and q′ �∗ q′′′

and q′′ �∗ q′′′. Then we can take a3 to be p′′′. Or,
• a2 is p′′ where p �∗ p′′. Then, using the induction hypothesis, we can take

a3 to be p′′′ where p′ �∗ p′′′ and p′′ �∗ p′′′.

We proceed similarly for the case where a�∗a1 is of the form snd(〈p, q〉)�∗q′,
a direct consequence of q �∗ q′.

Case: Assume a �∗ a1 is (case inl(p) of inl(z1).q, inr(z2).r) �∗ q′[p′/z1] and
is a direct consequence of p �∗ p′ and q �∗ q′. Then, by Lemma 8.3.3 (6) we
know that either:

• a2 is case inl(p′′) of inl(z1).q′′, inr(z2).r′′ with p �∗ p′′, q �∗ q′′ and r �∗ r′′.
By the induction hypothesis there are proof-terms p′′′, q′′′ and r′′′ such that
p′ �∗ p′′′, p′′ �∗ p′′′, q′ �∗ q′′′, q′′ �∗ q′′′, r′ �∗ r′′′ and r′′ �∗ r′′′. Then, by
Lemma 8.3.2 (2), we can take a3 to be q′′′[p′′′/z1]. Or,

• a2 is q′′[p′′/z1] where q �∗ q′′ and p �∗ p′′. Then, using the induction hy-
pothesis, we can take a3 to be q′′′ where p′ �∗ p′′′, p′′ �∗ p′′′, q′ �∗ q′′′ and
q′′ �∗ q′′′.

We proceed similarly for the case when a �∗ a1 is of the form

(case inr(p) of inl(z1).q, inr(z2).r) �∗ r′[p′/z2]

and is a direct consequence of p �∗ p′ and r �∗ r′.

Case: Assume a �∗ a1 is (select (show(v, p)) in z.y : s.q) �∗ p′[q′/z][v/y] and
is a direct consequence of p �∗ p′ and r �∗ r′.

Then, by Lemma 8.3.3 (7) we know that either:

• a2 is (select (show(v, p′′)) in z.y : s.q′′) with p �∗ p′′ and q �∗ q′′. By the
induction hypothesis there are proof-terms p′′′ and q′′′ such that p′ �∗ p′′′,
p′′ �∗ p′′′, q′ �∗ q′′′ and q′′ �∗ q′′′. Then, by Lemma 8.3.2 (3), we can take
a3 to be p′′′[q′′′/z][v/y]. Or,

• a2 is p′′[q′′/z][v/y] where p �∗ p′′ and q �∗ q′′. Then, using the induction
hypothesis, we can take a3 is p′′′[q′′′/z] where p′ �∗ p′′′, p′′ �∗ p′′′, q′ �∗ q′′′

and q′′ �∗ q′′′.

Let S(p) denote any of the following possible operations over a proof-term
p: union1(p,Sp), union2(p,Sp) ext1(p,Sp), ext2(p,Sp) or hide(p, SL), for some
specification expression Sp and symbol list SL.

Case: Assume a �∗ a1 is S(abstract uA. p) �∗ abstract uA. S(p′) and is a
direct consequence of p �∗ p′.
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Then, by Lemma 8.3.3 (8), we know that either

• a2 = S(abstract uA. p′′) with p �∗ p′′. By the induction hypothesis
there is a proof-term p′′′ such that p′ �∗ p′′′ and p′′ �∗ p′′′. So we let
a3 = abstract uA. S(p′′′).

• a2 = abstract uA. S(p′′) with p �∗ p′′. By the induction hypothesis
there is a proof-term p′′′ such that p′ �∗ p′′′ and p′′ �∗ p′′′. So we let
a3 = abstract uA. S(p′′′).

We deal similarly with the cases where a �∗ a1 is of the form

S(use x : s. p) �∗ use x : s. S(p′)
S(inl(p)) �∗ inl(S(p′))
S(inr(p)) �∗ inr(S(p′))

S(show(t, p)) �∗ show(t, S(p′))

and is a direct consequence of p �∗ p′, or of the form

S(〈p, q〉) �∗ 〈S(p′), S(q′)〉

and is a direct consequence of p �∗ p′ and q �∗ q′.

Case: Assume a�∗ a1 is ρ• (show(t, p))�∗ show(ρ(t), (ρ•p′)) and is a direct
consequence of p �∗ p′. Then, by Lemma 8.3.3 (9), we know that either:

• a2 = S(show(t, p′′)) with p �∗ p′′. By the induction hypothesis there is a
proof-term p′′′ such that p′�∗p′′′ and p′′�∗p′′′. So we let a3 = show(ρ(t), (ρ•
p′′′)). Or,

• a2 = show(ρ(t), (ρ•p′′)) with p�∗ p′′. By the induction hypothesis there is a
proof-term p′′′ such that p′�∗p′′′ and p′′�∗p′′′. So we let a3 = show(ρ(t), (ρ•
p′′′)).

We deal similarly with the cases where a �∗ a1 is of the form

ρ • (abstract uA. p) �∗ abstract uρ(A). S(p′)
ρ • (use x : s. p) �∗ use x : ρ(s). (ρ • p′)

ρ • (inl(p)) �∗ inl((ρ • p′))
ρ • (inr(p)) �∗ inr((ρ • p′))

and is a direct consequence of p �∗ p′, or of the form

ρ • 〈p, q〉�∗ 〈(ρ • p′), (ρ • q′)〉

and is a direct consequence of p �∗ p′ and q �∗ q′.
This last case concludes the proof. ��
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8.4 Discussion

This chapter presented some important proof-theoretic properties of SSL nec-
essary for the application of the Curry–Howard protocol to SSL.

We have defined a logical type theory for SSL for which the Curry–Howard
isomorphism holds. The proof-terms of our theory are more complex than those
for ordinary intuitionistic logic. We have seen that this is due to the presence of
additional proof-term constructors corresponding to structural rules. We exam-
ined further normalizing rules that can be given over the new proof-terms. This
makes the proof of strong normalization a non-trivial extension of the proof for
the intuitionistic case.

In the next chapter, we will show how to transform the proof-terms of this
chapter into provably correct functional programs, which may then be used
to consistently extend structured specifications. Then, in Chapter 10, we will
extend our calculus and its logical type theory to accommodate parametrized
specifications. We will show how to extract programs from that augmented cal-
culus. Finally, in Chapter 11, we will examine how our calculus and the synthesis
results can be applied to give methods for structured program synthesis.
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Structured Proofs-as-Programs

In this chapter we show how to synthesize correct SML programs from proofs
about CASL specifications according to the Curry–Howard protocol of Chapter
3. We also provide a method for incorporating extracted programs back into
a CASL specification, to develop an executable extension. We refer to these
techniques as structured proofs-as-programs.

Because we follow the protocol, the process of proving a specification and
then extracting a realizing program is similar to that given for intuitionistic logic
and SML programs in Chapter 2 and for IHL and imperative SML in Chapter
6 of Part III. We define an extraction map over proof-terms of the logical type
theory LTT (SSL) (described in Chapter 8) to elements of a computational type
theory, which consists of the lambda calculus of SML.

Briefly, our method is as follows. We define a notion of realizability between
terms of the CTT and the specification/formula pairs of our calculus. A realizer
of a pair Sp�A is taken as a Skolem function for the Skolem form of the formula,
true for some extension Sp′ of Sp. Then, given a proof

� Sp �A

with a corresponding proof-term, pSp
A, in the LTT, we define an extraction
map extractSSL so that the program extractSSLp realizes Sp � A. For instance,
given pSp
∀x:s•∃y:s•A(x,y) we extract the term extractSSL(p) as a realizer, standing
as a Skolem function for the proved formula, so that

Sp′ |= ∀x : s •A(x, (extractSSL(p) x))

holds for an extension Sp′ of Sp.
The extraction map extends the map for intuitionistic logic given in Chapter

2 of Part II, with additions to deal with structural rules. In extraction, most of
the structural rules are dealt with easily: unions and extension do not affect the
extracted program, and renamings define corresponding renamings of programs.
However, we find that we cannot immediately extract realizing programs from
proofs that involve instances of the rule for hiding symbols in a specification.
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We approach this problem by refining a given specification (that may include
hide) to a specification that contain sour extracted, realizing functions.

In order to achieve these results, we require CASL specifications to accom-
modate the lambda calculus of SML.

We proceed as follows.

• In Section 9.1, we define the computational type theory into which we shall
extract programs. This is the lambda calculus fragment of SML, constructed
over function symbols of CASL signatures. We discuss how to extend CASL
to accommodate these SML lambda terms in specifications.

• In Section 9.2, we define notions of realizability between our CTT and an
LTT.

• The extraction map is identified in Section 9.3. We use this map to extract
programs from what we call modular proofs (proofs without occurrences of
the (hide) rule.

• In Section 9.4, we describe how to overcome some of the complications that
arise from hiding, to extract realizing terms from all proofs. (In Chapter
11, we describe how to use these techniques to obtain recursively successive
executable extensions of a given specification that contain programs for each
declared function symbol of Sp.)

• Section 9.5 returns to the password checking system example used in previ-
ous chapters, to show how we can extract a correct program from our proof
and consistently refine the system specification.

• In section 9.6, we review how our methods of synthesis are an effective
application of the Curry–Howard protocol as it was defined in Chapter 3.

• Section 9.7 provides a brief discussion of our results.

9.1 Specifying and reasoning about SML programs

We wish to use CASL and our calculus to specify, reason about, and synthesize
functional, SML programs. This is achieved by extending CASL specifications
by

• extending the set of terms for any signature to include the lambda calculus
of SML, and

• assuming implicit axioms in every CASL specification, enabling SSL proofs
for reasoning about lambda terms.

This is similar to Chapter 2 of Part II and Chapter 4 of Part III, where we used
SML programs within formulae by treating signature terms as extended by the
lambda calculus of SML.

9.1.1 Extended signatures

To represent SML programs in our specifications, we need to extend our signa-
tures with functional, disjoint union and product sort constructors, correspond-
ing to their respective type constructors in SML. This is done by replacing our
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definition of signatures with that given in Definition 2.1.1 of Chapter 2, Part
II, p. 27, repeated here for completeness.

Definition 9.1.1 (Many-sorted signature with total functions). A
many-sorted signature Σ = 〈S, TF, P 〉 consists of:

• A set, S, of sorts. Sorts are generated from a set of basic sorts, B(S), ac-
cording to the following inductive definition. First, B(S) ⊆ S. Also, if s1
and s2 are in S, then so are
— the function sort (s1 → s2)
— the product sort (s1 ∗ s2)
— the disjoint union (s1|s2)
We assume that B(S) includes a special sort, called Unit.

• Sets TFw,s of total function symbols, for each function profile (w, s). A
function profile (w, s) is a pair of words, consisting of a sequence of argument
sorts w ∈ S∗ and a result sort s ∈ S. Constants are treated as functions
with no arguments. The length of w is called the arity of function symbols
in TFw,s. We assume that TF∅,Unit contains a unit symbol, written () (this
denotes the single inhabitant of the sort Unit ∈ B(S)).

• Sets Pw of predicate symbols, for each predicate profile w. A predicate profile
consists of a sequence of argument sorts w ∈ S∗. The length of w is called
the arity of predicate symbols in Pw. For each basic sort s ∈ B(S), there is
a distinguished equality predicate =s∈ Pss.

9.1.2 Lambda terms

Our SML programs will be represented as terms in CASL specifications. Be-
cause we are only concerned with the pure fragment of SML corresponding to
the lambda calculus, we need to extend the terms generated from a signature
by the lambda calculus. This is done by following the same pattern as in Fig.
2.1 of Chapter 2, Part II, p. 28, inductively extending the usual terms with op-
erators for lambda abstraction, application, pairing and making disjoint unions.
However, we will also add a new operator for recursion.

We redefine the terms for a signature Σ = 〈S, TF, P 〉 generated over vari-
ables V ar, Term(Σ, V ar), as in Fig. 9.1.
Remark 9.1. The recursion operator rec(s, cons, arg) can be written in SML
syntax as follows. Given the lists of constructors

cons = [c1 : s, . . . , cn : s, f1 : (s11 × . . .× sm1)→ s, . . . ,
fp : (s1p × . . .× smp)→ s}

args = [a1, . . . , an, b1, . . . , bp]

rec(x, s, cons, arg) can be thought of as shorthand for a recursive function ap-
plication

(rec s a1 . . . an b1 . . . bn)

with rec s defined in SML as follows
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a, b, c ::= elements of Term(Σ, V ar)
f(a1, . . . , an) f ∈ TFw,s, w of arity n

and (a1, . . . , an) a (possibly
empty) list of elements of
Term(Σ)

x a variable x ∈ V ar
Inl (a) in left
Inr (a) in right
match a with Inl (x) => b | Inr (y) => c match case, x, y ∈ V ar
fn x : s => b lambda abstraction, s is a sort of Σ
(a b) application
(a, b) pair
fst (a) first projection
snd (a) second projection
rec(s, cons, arg) recursion, where s is a sort

in Σ and cons a list of con-
structors for s, and arg is a
list of terms

Fig. 9.1. Syntax terms of Term(Σ, V ar).

fun rec s a1 . . . an b1 . . . bp c1 = a1
. . .
| rec s a1 . . . an b1 . . . bp cn = an
| rec s a1 . . . an b1 . . . bp f1(x1,1, . . . , xm,1) = b1x1,1 . . . xm,1 〈x1,1, . . . , xm,1〉
. . .
| rec s a1 . . . an b1 . . . bp fp(x1,p, . . . , xm,p) = bpx1,1 . . . xm,1 〈x1,p, . . . , xm,p〉

where
〈x1,1, . . . , xm,1〉

denotes

(rec s a1 . . . an b1 . . . bp x1) . . . (rec s a1 . . . an b1 . . . bp xk)

for [x1,j, . . . , xk,j] the list obtained from [x1,j, . . . , xm,j] by removing all xi,j such
that si,j = s.

9.1.3 Sorting

Our extended lambda terms are associated with sorts of their signature, ac-
cording to the sort inference rules provided in Fig. 9.2. These identical to those
given in Fig. 2.2, Chapter 2 of Part II, p. 29, except to include a sorting rule
for the new recursion terms. As usual, we use the words “sorts” and “types” for
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terms interchangeably, depending on whether we consider terms as elements of
a CASL specification or programs in SML, respectively.
Remark 9.2. The sort inference rule for recursion terms, (Rec), is weaker than
that actually used in SML. We omit the full rule, as this rule will suffice for
our purposes of illustrating program extraction. See, e.g., [MTH90] for the full
typing specification for SML.

Γ, x : s �Σ x : s
(Ass)

f ∈ TF(s1...sn),s Γ1 � a1 : s1 . . . Γn � an : sn

Γ, Γ1, . . . , Γn �Σ f(a1, . . . , an) : s
(Fn)

Γ �Σ a : s1

Γ �Σ Inl (a) : (s1|s2)
(Union1)

Γ �Σ a : s2

Γ �Σ Inr (a) : (s1|s2)
(Union2)

Γ1 �Σ a : s1 Γ2 �Σ b : s2

Γ1, Γ2 �Σ (a, b) : (s1 ∗ s2)
(Prod)

Γ �Σ a : (s1 ∗ s2)
Γ �Σ fst (a) : s1

(Proj1)
Γ �Σ a : (s1 ∗ s2)
Γ �Σ snd (a) : s2

(Proj2)

Γ, x : s1 �Σ a : s2

Γ �Σ fn x : s1 => a : s1 → s2
(Abs)

Γ1 �Σ a : s1 Γ2 �Σ b : (s1 → s2)
Γ1, Γ2 �Σ (b a) : s2

(App)

Γ1 �Σ a : (s1|s2) Γ2, x : s1 �Σ b : s Γ3, y : s2 �Σ c : s

Γ1, Γ2, Γ3 �Σ match a with Inl (x) => b | Inr (y) =>c : s
(Case)

Γ1 � c1 : s . . . Γn � cn : s
∆1 � f1 : (s11 × . . . × sm1) → s . . .

∆p � fp : (s1p × . . . × smp) → s
Θ1 � a1 : t . . . Θn � an : t

the result sort of b1, . . . , bp is t

Γ1 . . . , Θn � rec(s, cons, arg) : t
(Rec)

Fig. 9.2. Sort inference rules for terms of Σ.

9.1.4 Computational type theory

By the remarks in Section 2.4 of Chapter 2, our extended signatures and lambda
terms, together with the operational semantics, constitute an effective represen-
tation of SML.

That is, we can consider our set of terms and sorts to be a computational
type theory:
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C(SML) = 〈Terms(SML), Sorts(SML),�SML, T IR(SML)〉

where

• Terms(SML) is a set of terms, built from all Terms(Σ, V ar) for each sig-
nature Σ.

• Types(SML) is a set of types built from all sorts available for every signature.
• TIR(SML) is a set of typing rules that define the type inference relation
�SML that holds between contexts and typed terms, built from the collection
of all sorting rules for each signature.

We will use our SML terms within formulae to reason about programs. As
usual we use typewriter font to distinguish terms when used as programs, as
opposed to terms in formulae.

9.1.5 Operational semantics

We provide an operational semantics for lambda terms by a reduction relation
�SML, which is given in Figs. 9.3 and 9.4. These are the usual reduction rules
for lambda calculus, but using the syntax of SML.
Remark 9.3. For the purposes of this chapter, we do not provide an operational
semantics for the function symbols that occur in lambda terms. Instead, when
we use a lambda term in a specification, we assume that, when used as an SML
program, its function symbols correspond to functions which, when executed by
a standard SML compiler, evaluate according to the specification. In particular,
evaluation preserves equality. That is to say, if f evaluates to p, then f = p is
true in the models for the specification.
Example 9.1. For example, take the lambda term fn y : Nat => x + y in the
basic specification:

spec Nat 0 =
sorts

Nat
ops 0 : Nat ; s : Nat → Nat ; + : Nat ×Nat → Nat ; f : Nat → Nat
preds
≥: Nat ×Nat

axioms
∀x : Nat • x + 0 = x∀x ; y : Nat • x + s(y) = s(x + y)∀x : Nat • f (x ) =

fn y : Nat => x + y
end
We presume that, when treated as an SML program, fn y : Nat => x + y will
behave according to the reduction rules and that the function symbol + will be
according to the axioms of the specification.
Remark 9.4. A standard SML compiler is equipped with a denotational seman-
tics that is compatible with these rules (see, e.g., [MTH90]).
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(fn x : s => p) a �SML p[a/x]
match Inl(a) with Inl (x) => b | Inr (y) =>c �SML b[a/x]
match Inr(a) with Inl (x) => b | Inr (y) =>c �SML c[a/y]

fst(a, b) �SML a
snd(a, b) �SML b

Fig. 9.3. The operational semantics of lambda calculus.

Assume a list of constructors for a sort s, cons, defined

[c1 : s, . . . , cn : s,

f1 : (s11 × . . . × sm1) → s, . . . ,

fp : (s1p × . . . × smp) → s]

and a list of terms, arg, defined

[a1, . . . , an, b1, . . . , bp]

Then rec(cons, arg) reduces as follows.

rec(cons, arg)ci �SML ai

for each c1, . . . , cn.
For fi : (s1i × . . . × smi) such that each sji �= s,

rec(cons, arg)fi(d1i , . . . , dmi) �SML bid1i . . . dmi

For fi : (s1i × . . .×smi) with [d1, . . . , dk] the ordered list obtained from

{dji | sji = s}ji=1i,...,mi

rec(cons, arg)fi(d1i , . . . , dmi)�SML

bid1i . . . dmi(rec(cons, arg)d1) . . . (rec(cons, arg)dk)

Fig. 9.4. The operational semantics of recursion operators in the lambda calculus.

9.1.6 Using SML lambda terms in CASL

The CASL specification document [CoF01] does not use higher-order sorts.
That is, we are not permitted to have a function symbol that accepts another
function (non-constant) symbol as an argument.

For the remainder of this monograph we will relax this requirement.
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It will also be necessary to add extra-logical axioms to CASL specifications,
so that we can reason about lambda terms. For convenience, we will use the
schemata of Fig. 9.5 to generate these axioms.

�Int u =s r ⇒ r =s u
(ref)

where s is a basic sort

P [r/y] ∧ u =s r

P [u/y]
(subst)[[P ]; [u; r]; [s]]

where u and r are well-sorted of basic sort s and
y is the only free variable in P

�Int ∀y1 : s1 • P [Inl (y1)/x] ∧ ∀y2 : s2 • P [Inr (y2)/x]
�Int ∀x : s1|s2 • P

(disj-ind)[P ; [s1; s2]]

�Int Inl (u) = Inl (r)
�Int u =s1 r

(union=1)[[u; r]; [s1; s2]]

where Inl (u) and Inl (r) are well-sorted terms of sort (s1|s2)

�Int Inr (u) = Inr (r)
�Int u =s1 r

(union=2)[[u; r]; [s1; s2]]

where Inr (u) and Inr (r) are well-sorted terms of sort (s1|s2)

�Int Inl (u) = Inr (r) ⇒ ⊥ (union�=)[[u; r]; [s1; s2]]

where u and r are well-sorted terms of sorts s1 and s2 respectively

Fig. 9.5. Equality schemata and schemata for reasoning about disjoint unions.

Remark 9.5. Because formulae may now involve lambda terms from and higher-
order types, we have equalities between functions. For example, we can have a
specification with an axiom

f =nat→nat fn x : nat => x + x

We will assume that the semantics for these equalities is extensional. For ex-
ample, we take the above axiom to mean that f(y) denotes the same value as
(fn x : nat => x+x y) for every natural number y. These equalities will be par-
ticularly useful for providing definitions of functions in terms of SML lambda
terms.

9.1.7 Semantics of extended specifications

CASL specifications extended with SML terms can still be viewed as using
first-order signatures [HS96, pp. 47–48]. This is possible by translating our ex-
tended signatures into first-order signatures that involve combinators (see, e.g.,
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[Sim00, pp. 43–45]). We represent the lambda term formation operators by
appropriately typed I, S, K and application operators, with appropriate combi-
nator axioms added to every specification [HS86]. Our lambda calculus and its
axioms are then taken as syntactic sugar for the resulting system.

From the perspective of semantics, our extensions mean that we now assume
any models for a CASL specification are also models for a lambda calculus, so
that equality between interpretations of lambda terms coincides with �SML
reduction. There are several possible approaches to modelling the lambda cal-
culus. We do not detail a specific approach here, but instead leave the choice
open: the results to follow are not dependent on the choice of models for the
lambda calculus. See, e.g., [Bar90, pp. 337–347] for a discussion on denotational
semantics for the lambda calculus.

Because we can view our extensions as still retaining first-order signatures,
our understanding of specification building operations need not be altered. More
complex higher-order models can be developed, but it is not necessary to con-
sider these for our program extraction purposes.

9.2 Realizability

We now define a notion of realizability. A SML term is correct with respect to a
specification/formula pair Sp �A when it is a realizer for Sp and A. In the next
two sections, we will be concerned with the correct synthesis of SML terms, by
extraction of realizers.

We will define two kinds of realizers: modular realizers and extended realiz-
ers. The latter kind subsumes the former kind.

Modular realizability is essentially the same concept as modified realizability
for intuitionistic logic, but we now need to include CASL specifications. A
lambda term is a modular realizer of a formula and specification when it can
stand for the Skolem function of the Skolem form of the formula in a proof
about the specification.

In the next section, we derive an important extraction result: that we can
extract a modular realizer for Sp �A from a proof of this pair. However, as we
shall see, that result only works for a subset of SSL proofs, due to complications
that arise from application of the (hide) rule.

To provide a more general extraction result for all proofs, we require ex-
tended realizability. This weakens modular realizability for Sp � A: a lambda
term an extended realizer of a formula and specification when it is a modified
realizer for the formula and an extension of the specification. In section 9.4,
we shall use the result on extracting modular realizers to extract refinement
realizers from all SSL proofs.

9.2.1 Skolemization

To define our notions of realizability, we use the Skolem form of formulae.
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F etype(F )

any Harrop formula Unit

(A ∧ B)

⎧⎨
⎩

etype(A) if not H(B)
etype(B) if not H(A)
etype(A) ∗ etype(B) otherwise

(A ∨ B) etype(A)|etype(B)

(A ⇒ B)
{

etype(B) if not H(A)
etype(A) → etype(B) otherwise

(∀x : s • A) s → etype(A)

(∃x : s • A)
{

s if H(A)
s ∗ etype(A) otherwise

⊥ Unit

P is an atomic predicate.

Fig. 9.6. Inductive definition of etype.

We need the definition of Harrop formulae, given by Definition 6.1.1 of
Chapter 2, Part II, p. 33.

We also need to define a sort extraction map xsort from formulae to sorts of
C(SML). This the same map as given by in Fig. 2.9 of Chapter 2, Part II. For
completeness, we repeat the definition in Fig. 9.6.

An analogous result to Theorem 6.2.2 of Chapter 6, Part III holds.

Theorem 9.2.1. Take any proof

�LTT (SSL) dSp
A

Then
�SML extractmod(d) : etypeA

is a correct type inference.

Proof. The proof is by induction on the possible forms of d, and is similar to
that for Theorem 6.2.2 of Chapter 6, Part III. ��

We define the Skolem form of a formula, in the same way as we did for
formulae of Chapter 2. The definition is repeated here for completeness.

Definition 9.2.2 (Skolem form and Skolem functions). Given a closed
formula A, we define the Skolem form of A to be the Harrop formula Sk(A) =
Sk′(A, ∅), where Sk′(A, AV ) is defined as follows.

A unique function letter fA, called the Skolem function, is associated with
each such formula A, of sort etype(A). AV represents a list of application
variables for A (that is, the variables that will be arguments of fA). If AV
is {x1 : s1, . . . , xn : sn} then f(AV ) stands for the function application
app(f, (x1, . . . , xn)).
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1. If A is Harrop, then Sk′(A, AV ) = A.
2. If A = (B ∨ C), then

Sk′(A, AV ) = (∀x : etype(B) • fA(AV ) = Inl (x)⇒ Sk′(B, AV )[x/fB ])
∧(∀y : etype(C) • fA(AV ) = Inr (y)⇒ Sk′(C, AV )[y/fC ])

3. If A = (B ∧ C), then
a) If B is Harrop and C is not Harrop,

Sk′(A, AV ) = B ∧ Sk′(C, AV )[snd (fA)/fC ]

b) If B is not Harrop and C is Harrop,

Sk′(A, AV ) = (Sk′(B, AV )[fst (fA)/fB ] ∧ C)

c) If B and C are not Harrop,

Sk′(A, AV ) = (Sk′(B, AV )[fst (fA)/fB ] ∧ Sk′(C, AV )[snd (fA)/fC ])

4. If A = (B ⇒ C), then
a) If B is Harrop,

Sk′(A, AV ) = (B ⇒ Sk′(C, AV )[fA/fC ])

b) If B is not Harrop and C is not Harrop,

Sk′(A, AV ) = ∀x : etype(B) • (Sk′(B, AV )[x/fB ]⇒
Sk′(C, AV )[(fAx)/fC ])

5. If A = ∃y : s • P , then
a) when P is Harrop, Sk′(A, AV ) = Sk′(P, AV )[fA(AV )/y].
b) when P is not Harrop,

Sk′(A, AV ) = Sk′(P, AV )[fst (fA(AV ))/y][snd (fA(AV ))/fP ]

6. If A = ∀x : s • P , then Sk′(A, AV ) = ∀x : s • Sk′(P, AV )[(fAx)/fP ].

We will require the following Lemma.

Lemma 9.2.1. For any formula G, any term t and any specification Sp, if
Sig(Sp) contains Sig(G), we can prove

Sk(G)[t/fG] �SSL Sp �G

Proof. By induction on the form of G. ��
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9.2.2 Modular realizability

As in the case of modified realizability for intuitionistic logic, a lambda term is a
realizer for a formula when it can be used in place of the Skolem function in the
Skolem form of the formula, with the result being true (see Definition 2.5.2 of
Chapter 2, Part II, p. 46). The only difference is that we now need to take into
account the fact that our proofs are about CASL specifications. So we define a
notion of SSL-realizability that is given over pairs of CASL specifications and
formulae.

Definition 9.2.3 (Modular realizer). Given a specification Sp and a formula
A, r is a modular realizer of Sp �A if, and only if, r can be used for the Skolem
function fA in the Skolem form Sk(A), with the result being true of the models
of Sp

Sp |= Sk(A)[r/fA]

Remark 9.6. A modular realizer r for Sp � A must be a term of
Term(Sig(Sp), V ar). This is because Sp |= Sk(A)[r/fA] is true, and this state-
ment is well-formed only when all terms in Sk(A)[r/fA] symbols in Sig(Sp)
(This follows from Definition 7.1.15 of Chapter 7, p. 224, where |= is defined to
hold only between models and formulae of the same signature.)
Remark 9.7. This definition of realizability is similar to that of modified realiz-
ability for intuitionistic logic, but now extended to proofs about specifications.

Because we extend modified realizers from single formulae to pairs of specifi-
cations and formulae, our approach is comparable to that of Chapter 6 in Part
III, where modified realizability was adapted to define return value realizers
for pairs of programs and formulae of Hoare logic. However, note that, just as
with return value realizability, we define our realizers with respect to semantic
truth. This is in contrast to modified realizability of intuitionistic logic, which
was given with respect to provability of the Skolem form within the calculus.
Our reason for this is that it facilitates an easier approach to proving correctness
of extraction from proofs that involve induction.

9.2.3 Extended realizers

To define our notions of extended realizability, we require a notion of specifica-
tion extensions. We choose a simple notion of model inclusion for extension.

Definition 9.2.4 (Specification extension). A specification Sp 1 is said
to be an extension of a specification Sp (written Sp  Sp 1) if all models
of Sp 1 (restricted to Sig(Sp)) are also models of Sp — that is, when every
C ∈Mod(Sp 1) is such that C|Sig(Sp) ∈Mod(Sp).

We say an extension Sp  Sp 1 is relatively consistent if, assuming Sp is
consistent, then so is Sp 1.

We now define a second concept of realizability, based on modular realiz-
ability for extensions of specifications.
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Definition 9.2.5 (Extended realizer). Given a specification Sp and a for-
mula A, r is an extended realizer of Sp �A if, and only if,

Sp′ |= Sk(A)[r/fA]

is true for some relatively consistent extension Sp′ of Sp.
In this case, we write r extr Sp �A.

9.3 Extracting modular realizers

In this section, we provide one of the main results of this part of the book: there
is an extraction map from proof-terms of the logical type theory to the SML
lambda terms of the computational type theory, generating modular realizers
from proofs of specifications. This is the idea of structured proofs-as-programs.

Because our logical type theory is an extension of intuitionistic type theory,
the extraction map extends the extraction map for intuitionistic proof-terms.
Proof-terms corresponding to structural rules require some care.

In the case of unions, we can discard the structural rule altogether — it does
not affect the constructive content.

Renamings must be carried out over extracted programs.
However, in the case of hiding, we need to be careful. Our notion of modu-

lar realizability means that a realizer of Sp � P is written as a term of Sig(Sp)
(see Remark 9.6). Therefore we cannot extract programs that use hidden sym-
bols of a specification, because these programs cannot be spoken about in the
specification.

Consequently, in this section, we will prove that we can extract modular
realizers for a subset of SSL proofs, called modular proofs. In the next section,
we will describe a method for extracting extended realizers from all SSL proofs.
That method is based upon the definitions and results of this section.

9.3.1 The extraction map

The extraction map extractSSL is defined in Fig. 9.7. It extracts SML lambda
terms from proof-terms of LTT (SSL).

The map presumes a set of variables in V ar, each corresponding to a proof-
term variable from V arPT (SSL),

{xu | u ∈ V arPT (Int)}

Because the proof-terms for logical rules are similar to those for intuitionistic
logic, our extraction map is based on the map for intuitionistic logic in Chapter
2.

A lambda term is a modular realizer when it provides the constructive,
computational content for a formula. Thus the idea of our map is to extract
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pP extractmod(pP )
any proof-term
where H(P ) ()

uA xu not H(A)
() H(A)

abstract uA. aB fn xu => extractmod(a) not H(A)
extractmod(a) H(A)

app(cA⇒B , aA)
extractmod(c) H(A)
(extractmod(c) extractmod(a)) not H(A)

use x : s. aA fn x : s => extractmod(a)
specific(a∀x:s•A, v) (extractmod(a) v)

〈aA, bB〉 (extractmod(a), extractmod(b))
case aA∨B of inl(tA).bC ,

inr(uB).cC match extractmod(a) with
Inl(xt) => extractmod(b),
Inr(xu) => extractmod(c)

show(v, aA)
v H(A)
(v, extractmod(a)) not H(A)

select (a∃y•A) in x.uA[x/y].bB

(fn x => extractmod(b))
extractmod(a)

}
H(A)

(fn x =>
fn xu => extractmod(b))
fst(extractmod(a))
snd(extractmod(a))

⎫⎪⎪⎬
⎪⎪⎭ not H(A)

inl(a) Inl(extractmod(a))
inr(a) Inr(extractmod(a))
fst(a) fst(extractmod(a))

snd(a) snd(extractmod(a))
abort(a⊥) ()

rec(Conss, s, [a1; . . . ; an; b1; . . . ; bp]) rec(cons, arg)
union1(dSp	D,Sp) extractmod(d)
union2(dSp	D,Sp) extractmod(d)

ext1(dSp	D,Sp) extractmod(d)
ext2(dSp	D,Sp) extractmod(d)

ρ • dSp	D ρ(extractmod(d))
hide(dSp	D, SL) extractmod(d)

Fig. 9.7. The extraction map extractSSL, defined over the proof-terms of LTT (SSL)
to the lambda terms of C(SML).

this content from the proof-term of a proved specification/formula pair. Harrop
formulae have no computational content and so are systematically ignored,
while computational content for non-Harrop formulae is mapped to lambda
terms. The result yields terms in SML that are simply typed (with disjoint
unions and products).
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Also, we remove much structural information from the proof-term. In par-
ticular:

1. Translations of symbols is carried out explicitly,
2. the structural information of taking unions and extending specifications can

be ignored, and
3. applications of the hiding rule are ignored — but see below for a discussion

on the problem extraction of realizers from proof-terms with hiding, and
Section 9.4 for a solution to this problem.

Remark 9.8. Because we have assumed that all axioms available in a specifica-
tion are Harrop, we always extract the term () from applications of an axiom
introduction ax(Sp, A)Sp
A (by the first case of the table in Fig. 9.7).
Remark 9.9. Recall that, following [Pet96, WCP98, CPW00, PCW02], we use
Sig(Sp 1)∪Sig(Sp 2) as the standard representation of the isomorphism class
of Sig(Sp 1 and Sp 2). This simplifies the presentation of the (unioni), (exti)
(i = 1, 2) cases, since we do not have to write the embedding morphisms inl
and inr explicitly. So, we do not need these morphisms in our extraction map
or in our proof that extraction produces modular realizers.

However, if we wished to, we could avoid this representation, and redefine
extraction over union proof-terms as follows:

extractmod(union1(dSp 1
A,Sp 2)) = inl(extractmod(d))
extractmod(union2(dSp 2
B ,Sp 1)) = inr(extractmod(d))

where inl and inr are the embedding morphisms for the pushout construction
for amalgamated unions of signatures of Sp 1 and Sp 2.

9.3.2 Extracting modular realizers from modular proofs

We would like to synthesize a modular realizer of a specification/formula pair
from a proof of the pair by means of our extraction map.

Unfortunately, this is not possible for all proofs. We cannot obtain modular
realizers for certain applications of the hide rule.
Example 9.2. For instance, recall the password checking system of the previous
two chapters. An initial specification of the system’s password requirements,
PwdCore, was given in Example 7.6, Chapter 7, p. 234. The function sym-
bols {ge, inRange} of PwdCore were relevant to the internal specification of
the system. However, it is not desirable to expose these symbols when spec-
ifying the external functionality of the system. By hiding these functions, we
restricted the specification of the system to relevant functionality, obtaining a
final, encapsulating specification PwdSys.

We proved that, given any numerical password entered to the system, an
appropriate message can be output. The theorem was obtained by proving

� PwdCore � ∀x : nat • ∃y : string • V alidMsg(x, y)
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and then applying (hide) to obtain

� PwdSys � ∀x : nat • ∃y : string • V alidMsg(x, y)

When encoded in the logical type theory, we obtained a proof-term for the final
theorem of the form

p = hide(use x : nat. case

(specific(ext1(union1(BtoB • (rec([T, F ], boolean,

[(inr(ax(NatBoolean, T = T ))),
(inl(ax(NatBoolean, T = T )))])),StringBool),

〈SExt, AExt〉), inRange(x)))
of inl(u).show(‘Password acceptable’, app(p7, app(p6, p5))),

inr(v).show(‘Please choose a password in correct range’, p8),
{ge, inRange})

If we were to extract the program for this term using the extraction map as it
is defined, ignoring the application of hide, we would obtain the term

k = fn x : nat =>
match rec([true, false], [inr(()), inl(())])inRange(x) with

Inl(xu) => ‘Password acceptable’,
Inr(xv) => ‘Please choose a password in correct range’

Now inRange is not in the specification PwdSys, and therefore is not a valid
modular realizer of

PwdSys � ∀x : nat • ∃y : string • V alidMsg(x, y)

because it is not possible to obtain the Skolem form

PwdSys |= ∀x : nat • V alidMsg(x, (k x))

with k for the Skolem function.
We prove that extraction of realizers is guaranteed to be possible if the

proof-term is modular according to the following definition.

Definition 9.3.1. A proof-term d is said to be non-modular with respect to a
symbol list SL if

• d is of the form hide(eSp
A, SL) and
• if the term e depends on symbols that are in SL: that is, if Sig(Sp)∩SL �= ∅.

A proof-term is modular if it contains no non-modular subterms.



9.3 Extracting modular realizers 313

Remark 9.10. In practice, non-modular proof-terms often occur in the construc-
tion of specifications in SSL. This holds because we use functions from other
specifications to prove a required result. These functions are often hidden, to
aid comprehensibility and encapsulation in the resulting specification signature.
Consequently, it is important to find a means of extracting correct programs
from non-modular proof-terms. We do this in the next section.

We now prove that we can extract realizers from modular proof-terms.

Theorem 9.3.2. Take any set of typed proof-terms Γ = {uG1
1 , . . . , uGn

n }. We
define Γ ′ to the corresponding set of Skolemized formulae

Γ ′ = {Sk(G1)[xu1/fG1 ], . . . , Sk(Gn)[xun
/fGn ]}

If there is a well-formed modular proof-term p for the proof of Sp � P

Γ �LTT (SSL) pSp
P

then
Sp, Γ ′ |= Sk(P )[extractmod(p)/fP ]

Proof. By induction on the length of the proof.
We can assume that P is not Harrop, because if it is, then Sk(P ) is P and we

are done. This covers the case of axiom introduction, as, the conclusion formula
P is Harrop (by assumption 7.2) and so Sk(P )[extractmod(p)/fP ] is simply P .

We proceed as follows for proofs ending in structural rules.
Case: (trans). Assume pSp
P is of the form ρ•d(Sa with ρ)
(ρ•(A)), derived by

an application of (trans):

∆ � dSa
A

ρ‘(∆) � ρ • d(Sa with ρ)
(ρ•(A))
(trans)

so that ∆ must be of the form {uD1
1 , . . . , uDn

n } with Γ set to be {uρ•D1
1 , . . . , uρ•Dn

n }.
This means that Γ ′ is

ρ‘(∆′) = {ρ • Sk(D1)[xu1/fD1 ], . . . , ρ • Sk(Dn)[xun/fDn ]}

By the IH,
Sa, ∆′ |= Sk(A)[extractmod(d)/fA]

By the semantics of translation, it can be seen that this entails

(Sa with ρ), ρ‘(∆′) |= ρ • Sk(A)[extractmod(d)/fA]

Because Γ ′ is ρ‘(∆′) and Sk(P )[extractmod(p)/fP ] is

Sk(ρ •A)[ρ(extractmod(d))/fA] = ρ • Sk(A)[extractmod(d)/fA]

we are done.
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Case: (union1). Assume pSp
P is of the form union1(d,Sp 2)Sp 1 and Sp 2
A,
derived from a proof of the form

Γ � dSp 1
A

Γ � union1(d,Sp 2)(Sp 1 and Sp 2)
A
union1

By the IH,
Sp 1, Γ ′ |= Sk(A)[extractmod(d)/fA] (9.1)

But, by definition, extractmod(p) is extractmod(union1(d,Sp 2)) = extractmod(d),
and so (9.1) is the same as writing

Sp 1, Γ ′ |= Sk(A)[extractmod(p)/fA] (9.2)

By the semantics for unions it then follows that

(Sp 1 and Sp 2), Γ ′ |= Sk(A)[extractmod(p)/fA]

as required.
The cases of (union2), (ext1), (ext2) (hide) are similar to (union1). Because

the proof-term is modular, there are no complications with (hide).
We proceed as follows for proofs ending in logical rules. Because these cases

involve proof-terms that are the same as those of LTT (Int) of Chapter 2, and
the extracted programs are identical, we use similar arguments for Int, only
augmented to accommodate structured specifications in our notion of validity
of Skolem forms:

Sp, Γ ′ |= Sk(P )[extractmod(p)/fP ]

Case: (Ass-I). Assume that pSp
P is of the form uSp
A, obtained by an ap-
plication of (Ass-I):

uA � u〈Sig(A),∅〉
A
(Ass-I)

So Γ ′ = {Sk(A)[xu/fA]} and we can prove

Sk(A)[xu/fA] � 〈Sig(Sk(A)[xu/fA]), ∅〉 � Sk(A)[xu/fA]
(Ass-I)

It is then easy to show that

sp(u′) = 〈Sig(Sk(A)[xu/fA]), ∅〉 = 〈Sig(A), ∅〉 = sp(u)

Then, by soundness, we are done.
Case: (∧-I). Assume that pSp
P is of the form

〈a, b〉Sp
A∧B

obtained by an application of (∧-I):

Γ1 � aSp
A Γ2 � bSp
A

Γ1, Γ2 � 〈a, b〉Sp
A∧B
(∧-I)

so that Γ ′ = Γ ′
1 ∪ Γ ′

2.
Because we assume that P is not Harrop, either
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1. A and B are both non-Harrop.
2. A is Harrop and B is non-Harrop.
3. A is non-Harrop and B is Harrop.

We deal only with the first case, as the other two cases are similar. Here,
extractmod(p) is (extractmod(a), extractmod(b)) and Sk(P )[extractmod(p)/fP ] is

Sk(A)[Sk(A)[fst(extractmod(p))/fA] ∧ Sk(B)[snd(extractmod(p))/fA]

So, by the IH, we know

Sp, Γ ′
1 |= Sk(A)[extractmod(a)/fA]

Sp, Γ ′
2 |= Sk(B)[extractmod(b)/fB ]

By the definition of |=, it follows from this that

Sp, Γ ′ |= Sk(A)[extractmod(a)/fA] ∧ Sk(B)[extractmod(b)/fB ] (9.3)

Because we assume all specifications models include a model of the lambda
calculus with equality preserving reduction, we know that

Sp |= fst(extractmod(a), extractmod(b)) = extractmod(a) (9.4)

Sp |= snd(extractmod(a), extractmod(b)) = extractmod(b) (9.5)

So, (9.4), (9.5) and (9.3) give us

Sp, Γ ′ |= Sk(A)[fst(extractmod(a), extractmod(b))]∧
Sk(B)[snd(extractmod(a), extractmod(b))/fA]

This is the required conclusion, because

Sk(A)[fst(extractmod(a), extractmod(b))/fA]∧
Sk(B)[fst(extractmod(a), extractmod(b))/fB ]

is the same as writing

Sk(A)[fst(extractmod(p))/fA] ∧ Sk(B)[snd(extractmod(p))/fB ]

Case: (∧-E1). Assume that pSp
P is of the form

fst(q)Sp
A

obtained by an application of (∧-E1):

Γ �SSL qSp
A∧B

Γ �SSL fst(q)Sp
A
(∧-E1)

We are required to prove Sp, Γ ′ |= Sk(A)[extractmod(p)/fA].
There are two possible cases: either B is Harrop or B is not Harrop. We

reason over these cases.
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1. Assume that B is Harrop, so that Sk(B) = B. Then, extractmod(p) is
extractmod(q) and we are required to prove Sp, Γ ′ |= Sk(A)[extractmod(q)/fA].
By the IH and the fact that Sk(B) = B, we know

Sp, Γ ′ |= Sk(A)[extractmod(q)/fA] ∧B

By the semantics ∧, it easily follows that

Sp, Γ ′ |= Sk(A)[extractmod(q)/fA]

as required.
2. Assume that B is not Harrop. Then, extractmod(p) is fst(extractmod(q)) and

we are required to show Sp, Γ ′ |= Sk(A)[fst(extractmod(q))/fA].
By the IH, we know

Sp, Γ ′ |= Sk(A)[fst(extractmod(q))/fA] ∧ Sk(B)[snd(extractmod(q))/fB ]

From this, by the semantics for ∧, we obtain the required conclusion

Sp, Γ ′ |= Sk(A)[fst(extractmod(q))/fA]

Case: (∧-E2). Similar to the case (∧-E1) above.
Case: (∨-I1). Assume that pSp
P is of the form

inl(a)Sp
A∨B

obtained by an application of (∨-I1)

Γ �SSL aSp
A

Γ �SSL inl(a)Sp
A∨B
((∨-I1)

so that extractmod(p) is Inl(extractmod(a)).
We are required to show that Sp, Γ ′ |= Sk(P )[extractmod(p)/fP ] is true.

That is, we must prove

Sp, Γ ′ |= (∀x : etype(A) • Inl(extractmod(a)) = Inl(x)⇒ Sk(A)[x/fA])∧
(∀y : etype(B) • Inl(extractmod(a)) = Inr(y)⇒ Sk(B)[y/fB ])

To show this, we take any model M ∈ Mod(Sp) and any interpretation
ι̂ : V ar →M such that

M |=ι G′

for each G′ ∈ Γ ′. We try to show

M |=ι (∀x : etype(A) • Inl(extractmod(a)) = Inl(x)⇒ Sk(A)[x/fA])∧
(∀y : etype(B) • Inl(extractmod(a)) = Inr(y)⇒ Sk(B)[y/fB ]) (9.6)

By the IH,
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M |=ι Sk(A)[extractmod(a)/fA] (9.7)

We prove the left hand side of the conjunction (9.6) — the right hand side
is similar.

Take any x : etype(A)-variant ι′ of ι, and assume

M |=ι′ Inl(extractmod(a)) = Inl(x) (9.8)

Because we use a loose semantics (Chapter 7, p. 228, that models the lambda
calculus (p. 304 of this chapter), this must mean that

M |=ι′ extractmod(a) = x (9.9)

So, (9.7) may be rewritten

M |=ι′ Sk(A)[x/fA] (9.10)

Because the assumption (9.8) entails (9.10) for any x : etype(A)-variant ι′ of ι
we know that

M |=ι ∀x : etype(A) • Inl(extractmod(a)) = Inl(x)⇒ Sk(A)[x/fA] (9.11)

This gives us the left hand side of the required conjunction.
The right hand side of (9.6) is deduced similarly.
Case: (∨-I2). Similar to the (∨-I1) case above.
Case: (∨-E). Assume that pSp
P is of the form

case e of inl(x).a, inr(y).bSp
C

obtained by an application of (∨-E)

Γ1 �SSL Sp �A ∨B Γ2, u
A �SSL Sp � C Γ3, v

B �SSL Sp � C

Γ1, Γ2, Γ3 � case e of inl(u).a, inr(v).bSp
C
(∨-E)

so that Γ ′ = Γ ′
1 ∪ Γ2 ∪ Γ3, and extractmod(p) is defined as

match extractmod(e) with
Inl(xu) => extractmod(a),
Inr(xv) => extractmod(b)

(9.12)

By the IH,

Sp, Γ ′
1 |= Sk(A ∨B)[extractmod(e)/fA∨B ] (9.13)

Sp, Γ ′
2 ∪ {Sk(A)[xu/fA]} |= Sk(C)[extractmod(a)/fC ] (9.14)

Sp, Γ ′
3 ∪ {Sk(B)[xv/fB ]} |= Sk(C)[extractmod(b)/fC ] (9.15)

By definition of Sk(A ∨B), (9.13) may be rewritten as:

Sp, Γ ′
1 |= N (9.16)
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where N is

(∀x : etype(A) • extractmod(e) = Inl(x)⇒ Sk(A)[x/fA])∧
(∀y : etype(B) • extractmod(e) = Inr(y)⇒ Sk(B)[y/fB ])

Take any model M ∈ Mod(Sp) and interpretation ι̂ : V ar → D such that
M |= G′ for each G′ ∈ Γ ′. We want to show that

M |=ι Sk(C)[extractmod(p)/fC ] (9.17)

Because we use loose semantics and our models must always model the
lambda calculus, our models must model disjoint union sorts given by Inl and
Inr constructors. So, we know that, either there is a term vl such that

ι(extractmod(e)) = ι(Inl(vl)) (9.18)

or else there is a term vr such that

ι(extractmod(e)) = ι(Inr(vr)) (9.19)

We reason over these two possible cases to establish (9.17)

1. Assume (9.18) holds. It follows then, by instantiating the first conjunct of
(9.16) with (9.12), that

M |=ι Sk(A)[vl/fA] (9.20)

But then (9.20) and (9.14) give us

M |=ι Sk(C)[extractmod(a)[vl/xu]/fC ] (9.21)

Because our models use a loose semantics and must preserve the lambda
calculus, we have that

ι(extractmod(p)) = ι

⎛⎝match extractmod(e) with
Inl(xu) => extractmod(a),
Inr(xv) => extractmod(b)

⎞⎠ =

ι

⎛⎝match Inl(vl) with
Inl(xu) => extractmod(a),
Inr(xv) => extractmod(b)

⎞⎠ = ι(extractmod(a)[vl/xu]) (9.22)

So (9.22) and (9.21) entail (9.17)

M |=ι Sk(C)[extractmod(p)/fC ]

as required.
2. The case when (9.19) holds is similar.
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Case: (∃-I). Assume that the proof-term pSp
P is of the form ∃x : s • A
obtained by an application of (∃-I)

Γ � aSp
A[v/x]

Γ � show(v, a)Sp
∃x:s•A
(∃-I)

(9.23)

There are two cases, dependent on whether A is Harrop or not.

1. Assume A is Harrop. Then extractmod(p) is defined

extractmod(p) = v (9.24)

Also, because A is Harrop, we know that Sk(∃x : s • A) is A. This means
Sk(∃x : s • A)[extractmod(p)/fP ] is A[v/fA], and so it is the case that
Sk(∃x : s •A)[fA/x][extractmod(p)/fA] = A[v/x]. Consequently, by (9.23),

Sp, Γ |= Sk(∃x : s •A)[extractmod(p)/f∃x:s•A]

By application of Lemma 9.2.1, we have

Sp, Γ ′ |= Gi

for each Gi ∈ Γ i = 1, . . . , n.
So, we have

Sp, Γ ′ |= Sk(∃x : s •A)[extractmod(p)/f∃x:s•A]

2. Assume A is not Harrop. Then

extractmod(p) = (v, extractmod(a)) (9.25)

Because A is not Harrop, Sk(∃x : s •A)[extractmod(p)/fP ] is

Sk(A)[fst(extractmod(p))/x][snd(extractmod(p))/fA]

Now, by the IH

Sp, Γ ′ |= Sk(A)[v/x][extractmod(a)/fA] (9.26)

Because our models preserve the lambda calculus

Sp |= fst(extractmod(p)) = v (9.27)

and
Sp |= snd(extractmod(p)) = extractmod(a) (9.28)

The required conclusion follows from (9.26), (9.27) and (9.28)

Sp, Γ ′ |= Sk(A)[fst(extractmod(p))/x][extractmod(a)/fA] (9.29)
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Case: (∃-E). Assume that pSp
P is of the form select (a) in x.u.bSp
C , ob-
tained by an application of (∃-E)

Γ1 � aSp
∃y:s•A Γ2, u
Sp
A[v/y] � bSp
C

Γ1, Γ2 � select (a) in x.u.bSp
C
(∃-E)

(9.30)

So, Γ ′ = Γ ′
1 ∪ Γ ′

2.
We take any model M ∈ Mod(Sp) and any interpretation ι̂ : V ar → M

such that
M |=ι G′

for each G′ ∈ Γ ′, and show

M |=ι Sk(C)[extractmod(p)/fC ] (9.31)

There are two cases, dependent on whether A is Harrop or not.

1. If A is Harrop, then extractmod(p) is

(fn v => extractmod(b)) extractmod(a)

Because A is Harrop, Sk(A[v/y]) is A[v/y]. So, by the IH,

Sp, Γ ′
2 ∪ {A[v/y]} |= Sk(C)[extractmod(b)/fC ]

and so, in particular,

M |=ι ∀v : s •A[v/y]⇒ Sk(C)[extractmod(b)/fC ] (9.32)

Because A is Harrop,

Sk(∃y : s •A)[extractmod(a)/f∃y:s•A]
= A[f∃y:s•A/y][extractmod(a)/f∃y:s•A]
= A[extractmod(a)/y]

So, by the IH
Sp, Γ ′

1 |= A[extractmod(a)/y]

and, in particular,
M |=ι A[extractmod(a)/y] (9.33)

By the definition of |=, (9.33) and (9.32) entail

M |=ι Sk(C)[extractmod(b)/fC ][extractmod(a)/v] (9.34)

Because, by definition of the (∃-E) rule, v cannot occur in C, (9.34) means

M |=ι Sk(C)[(extractmod(b)[extractmod(a)/v])/fC ] (9.35)

Because our models preserve the lambda calculus, and
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fn v => extractmod(b)) extractmod(a) �SML extractmod(b)[extractmod(a)/v]

we know that

ι(extractmod(p)) = ι((fn v => extractmod(b)) extractmod(a)) =
ι(extractmod(b)[extractmod(a)/v]) (9.36)

The required conclusion (9.31) follows from (9.35) and (9.36).
2. If A is not Harrop, then extractmod(p) is

(fn v => fn xu => extractmod(b)) fst(extractmod(a)) snd(extractmod(a))

By the IH,

M |=ι

∀v : s • ∀xu : etype(A) • Sk(A)[v/y][xu/fA]⇒ Sk(C)[extractmod(b)/fC ]
(9.37)

Because A is not Harrop,

Sk(∃y : s •A)[extractmod(a)/f∃y:s•A]
= Sk(A)[fst(f∃y:s•A)/y][snd(f∃y:s•A)/fA][extractmod(a)/f∃y:s•A]
= Sk(A)[fst(extractmod(a))/y][snd(extractmod(a))/fA]

So, by the IH

M |=ι Sk(A)[fst(extractmod(a))/y][snd(extractmod(a))/fA] (9.38)

We take (9.37), set v to fst(extractmod(a)), xu to snd(extractmod(a)), and
then instantiating with (9.38) to obtain

M |=ι Sk(C)[extractmod(b)/fC ][fst(extractmod(a))/v][snd(extractmod(a))/xu]
(9.39)

Because, by definition of the (∃-E) rule, v cannot occur in C, and also xu

cannot occur in C,1

Sk(C)[extractmod(b)/fC ][fst(extractmod(a))/v][snd(extractmod(a))/xu]

is the same formula as

Sk(C)[((extractmod(b)[fst(extractmod(a))/v][snd(extractmod(a))/xu]))/fC ]

and so (9.39) means

1 Recall that all variables of the form xa (a ∈ V arPT (LTTSSL)) are assumed not to
occur in any formulae prior to use.
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M |=ι

Sk(C)[((extractmod(b)[fst(extractmod(a))/v][snd(extractmod(a))/xu]))/fC ]
(9.40)

Because our models preserve the lambda calculus, and

(fn v => fn xu => extractmod(b))
fst(extractmod(a)) snd(extractmod(a))�SML

extractmod(b)[fst(extractmod(a))/v][snd(extractmod(a))/xu]

we know that

ι((fn v => fn xu => extractmod(b))
fst(extractmod(a)) snd(extractmod(a))) =

ι(extractmod(b)[fst(extractmod(a))/v][snd(extractmod(a))/xu]) (9.41)

So (9.41) and (9.40) gives us the required conclusion (9.31).

Case: (⇒-I). Assume that pSp
P is of the form A ⇒ B obtained by an
application of (⇒-I)

Γ, uA � bSp
B

Γ � abstract u. bSp
C
(⇒-I)

There are two cases, dependent on whether A is Harrop or not.

1. Assume that A is Harrop. Then extractmod(p) is extractmod(b). By the IH,

Sp, Γ ∪ {A} |= Sk(B)[extractmod(b)/fB ]

because Sk(A) is A. By the semantics of implication, this means

Sp, Γ |= A⇒ Sk(B)[extractmod(b)/fB ]

This is the required conclusion, because extractmod(p) = extractmod(b) and
because

Sk(A⇒ B)[extractmod(p)/fA⇒B ]

is the same formula as the conclusion

A⇒ Sk(B)[extractmod(b)/fB ]

2. Assume that A is not Harrop. Then extractmod(p) is fn xu => extractmod(b).
By the IH, we know that there is a proof of the form

Sp, Γ ′ ∪ {Sk(A)[xu/fA]} |= Sk(B)[extractmod(b)/fB ] (9.42)

Take any model M ∈ Mod(Sp) and any interpretation ι̂ : V ar → M such
that
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M |=ι G′

for each G′ ∈ Γ ′.
Because our models respect the lambda calculus with equality preserving
reduction,

ι((fn xu => extractmod(b)) xu) = ι(extractmod(b)) (9.43)

Now (9.43) and (9.42) entail that

M |=ι {Sk(A)[xu/fA]} entails M |=ι Sk(B)[((fn xu => extractmod(b)) xu)/fB ]

So, by the semantics for implication

M |=ι Sk(A)[xu/fA]⇒ Sk(B)[(extractmod(p) xu)/fB ] (9.44)

The semantics for quantification permits us to abstract over xu, to give

M |=ι ∀xu : etype(A) • Sk(A)[xu/fA]⇒ Sk(B)[extractmod(p) xu/fB ]
(9.45)

This is the required conclusion.

Case: (⇒-E). Assume that pSp
P is of the form C, obtained by an application
of (⇒-E)

Γ1 � aSp
B⇒C Γ2 � bSp
B

Γ1, Γ2 � app(a, b)Sp
C
(⇒-E)

so that Γ ′ = Γ ′
1 ∪ Γ ′

2.
There are two cases, dependent on whether B is Harrop or not.

1. Assume that B is Harrop. Then extractmod(p) = extractmod(a).
Also, by the IH,

Sp, Γ ′
1 |=ι B ⇒ Sk(C)[extractmod(a)/fC ] (9.46)

and
Sp, Γ ′

2 |=ι B (9.47)

The semantics for implication permits us to instantiate (9.46) with (9.47)
to give

Sp, Γ |=ι Sk(C)[extractmod(a)/fC ]

Because extractmod(p) = extractmod(a), the conclusion of this proof is the
same as stating Sk(C)[extractmod(p)/fC ], as required.

2. Assume that B is not Harrop. Then extractmod(p) is
(extractmod(a) extractmod(b)). Also, by the IH, we know

Sp, Γ ′
1 |= ∀x : etype(B)•Sk(B)[x/fB ]⇒ Sk(C)[extractmod(a) x/fC ] (9.48)

and
Sp, Γ ′

2 |= Sk(B)[extractmod(b)/fB ] (9.49)
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The semantics for quantification and implication allows us to take (9.46),
instantiate x with extractmod(b), and then instantiate with (9.47) to give

Sp, Γ ′ |= Sk(C)[(extractmod(a) extractmod(b))/fC ]

Because extractmod(p) is defined to be (extractmod(a) extractmod(b)), this is
the required conclusion.

Case: (∀-I). Assume that pSp
P is of the form ∀x : s • A, obtained by an
application of (∀-I)

Γ � aSp
A

Γ � use x : s. aSp
∀x:s•A
(∀-I)

Because we have assumed that P is not Harrop (so ∀x : s•A is not Harrop),
A must not be Harrop, and extractmod(p) is fn x => extractmod(a)

Take any model M ∈ Mod(Sp) and any interpretation ι̂ : V ar → M such
that

M |=ι G′

for each G′ ∈ Γ ′

By the IH,
M |=ι Sk(A)[extractmod(a)/fA] (9.50)

Because our models take reducible lambda terms as equal (because they
satisfy axioms generated by schemata of Fig. 9.5)

ι(fn x => extractmod(a) x) = ι(extractmod(a)) (9.51)

Now (9.51) and (9.50) entail

M |=ι Sk(A)[(extractmod(p) x)/fA] (9.52)

By the semantics for quantification we can abstract over x in (9.52) to give
us the required conclusion

M |=ι ∀x : etype(A) • Sk(A)[extractmod(p) x/fA]

Case: (∀-E). Assume that pSp
P is of the form specific(a, t)Sp
A[t/x] obtained
by an application of (∀-E)

Γ � aSp
∀x:s•A

Γ � specific(a, t)Sp
A[t/x]
(∀-E)

Because we have assumed that P is not Harrop, this means that A must not
be Harrop, and extractmod(p) is (extractmod(a) t)

By the IH,

Sp, Γ ′ |= ∀x : s • Sk(A)[(extractmod(a) x)/fA] (9.53)
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To obtain the required conclusion, we need only instantiate 9.53) with t to
give

Sp, Γ ′ |= Sk(A)[(extractmod(a) t)/fA] (9.54)

This is the required result, because

Sk(A)[extractmod(a) t/fA]

is the same formula as
Sk(A)[extractmod(p)/fA]

Case: (Ind(s, Σ)). Assume that pSp
P is of the form

rec(Conss, s, [a1; . . . ; an; b1; . . . ; bp])〈Σ,Ax〉
∀x:s•A

obtained by an induction:

a
〈Σ,Ax〉
P [c1/x]
1 . . . a

〈Σ,Ax〉
P [cn/x]
n b

〈Σ,Ax〉
Pf1
1 . . . b

〈Σ,Ax〉
Pfp
p

rec(Conss, s, [a1; . . . ; an; b1; . . . ; bp])〈Σ,Ax〉
∀x:s•P
Ind(s, Σ)

where

• 〈Σ, Ax〉 is a basic specification where Σ = 〈S, TF, P 〉 with constructors
Conss ⊆ TF for a sort s ∈ S,

Conss = {c1 : s, . . . , cn : s, f1 : (s1
1 × . . .× s1

m1
)→ s, . . . ,

fp : (sp
1 × . . .× sp

mp
)→ s}

and
• where each Pfi is defined as in Fig. 7.6 of Chapter 7 (p. 244).

In the non-Harrop case,

extractmod(p) = rec(cons, arg)

where
cons = [c1; . . . ; cn; f1; . . . ; fp] and
arg = [extractmod(F1); . . . ; extractmod(fp)]

We are required to show that

M |=ι ∀x : s • Sk(A)[(extractmod(p) x)/fA]

for M ∈Mod(〈Σ, Ax〉) and every interpretation ι.
That is, we need to show that, for every x-variant ι′(x) ∈ sM ,

M |=ι′ Sk(A)[(extractmod(p) x)/fA] (9.55)

Let ι′′ be the x-variant defined by
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ι′′ = ι′[fP �→ (ι′(extractmod(p) x))]

Because we use a loose semantics and s has constructors Conss, we know
that ι′(x) must be of one of the following possible forms

ι′(c1), . . . , ι′(cn),
ι′(f1(d1

1, . . . , d
1
m1

))
. . .

ι′(fp(d
p
1, . . . , d

p
mp

))

where each dj
1 ∈ T (Σ, ∅)sj

1
, . . . , dj

mj
∈ T (Σ, ∅)sj

mj
(j = 1, . . . , p).

To establish (9.55), we use a secondary induction. We reason over the pos-
sible form of ι′(x).

• Assume ι′(x) = ι′(ci), for some i = 1, . . . , n.
By the main IH

M |= Sk(A[ci/x])[extractmod(pi)/fA]

So, in particular,
|=ι′ Sk(A)[extractmod(pi)/fA] (9.56)

But, by the definition of �SML over recursion terms, and because
extractmod(p) = rec(cons, arg),

(extractmod(p) ci) �SML extractmod(pi)

and so, because our models take reducibility to entail equality,

ι′(extractmod(p) x) = ι′(extractmod(pi)) (9.57)

So, using (9.56) and (9.57), we can deduce

M |=ι′ Sk(A)[(extractmod(p) x)/fA]

as required.
• Assume ι′(x) = ι′(fi(di

1, . . . , d
i
mi

)) for some i = 1, . . . , n, and that si
j �= s for

each j = 1, . . . , mi.
In this case, because extractmod(p) = rec(cons, arg),

(extractmod(p) fi(di
1, . . . , d

i
mi

)) �SML (extractmod(pi)di
1 . . . di

mi
)

and so, because our models take reducibility to entail equality,

ι′(extractmod(p) x) = ι′(extractmod(pi) di
1 . . . di

mi
) (9.58)

By the main IH,
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M |=ι ∀x1i
: s1i

, . . . xmi
: smi

• Sk(A)[fi(xi
1, . . . , x

i
mi

)/x]

[(extractmod(pi) xi
1 . . . xi

mi
)/fA]

So, by repeated instantiation,

M |=ι Sk(A)[fi(di
1, . . . , d

i
mi

)/x][(extractmod(pi) di
1 . . . di

mi
)/fA]

and thus, by the definition of ι′

M |=ι′ Sk(A)[(extractmod(pi) di
1 . . . di

mi
)/fA] (9.59)

Then, by (9.58) and (9.59), we have

M |=ι′ Sk(A)[(extractmod(p) x)/fA]

as required.
• Assume ι′(x) = ι′(fi(d1i , . . . , dmi)) for some i = 1, . . . , n, where the set

M(s, {xi
j : si

j}j=1,...,mi
) is non-empty, defined as in Fig. 7.6 of Chapter 7 (p.

244):

M(s, {xi
j : si

j}j=1,...,mi
) =

{xi
j : si

j | si
j = s for ji = 1i, . . . , mi} = {x1 : s, . . . , xk : s}

We deal with the more complicated case where k > 1. The other case (k = 1)
is similar. Note that we have a set of terms corresponding to M(s, {xi

j :
si

j}j=1,...,mi
)

M(s, {di
j : si

j}j=1,...,mi) =

{di
j : si

j | si
j = s for ji = 1i, . . . , mi} = {d1 : s, . . . , dk : s}

In this case, because extractmod(p) = rec(cons, arg),

(extractmod(p) fi(di
1, . . . , d

i
mi

))�SML

extractmod(pi) di
1 . . . di

mi
(extractmod(p) d1) . . . (extractmod(p)dk)

and so

ι′(extractmod(p) x) =

ι′(extractmod(pi) di
1 . . . di

mi
(extractmod(p) d1) . . . (extractmod(p)dk)) (9.60)

By the secondary IH, for each l = 1, . . . , k, because dl ∈ T (Σ, ∅)s,

M |=ιl
Sk(A)[(extractmod(p) x)/fA]

for ιl = ι[x �→ ι(dl)]. This means



328 9 Structured Proofs-as-Programs

M |=ι Sk(A)[(extractmod(p) dl)/fA] (9.61)

By the main IH,

M |=ι ∀xi
1 : si

1, . . . , x
i
mi

: si
mi
•

∀y1 : s • Sk(A)[x1/x][yj/fA]⇒
. . .

∀yk : s • Sk(A)[xk/x][yk/fA]⇒
Sk(A)[fi(xi

1, . . . , x
i
m)/x][(extractmod(pi)x1i

. . . xmi
y1 . . . yk)/fA] (9.62)

By repeatedly instantiating (9.62) with (9.61), we can obtain

M |=ι Sk(A)[fi(di
1, . . . , d

i
mi

)/x]

[(extractmod(pi)di
1 . . . di

mi
(extractmod(p)d1) . . . (extractmod(p)dk))/fA]

Then, by the definition of ι′ and (9.60), we have

M |=ι′ Sk(A)[(extractmod(p) x)/fA]

as required.

This last case concludes the proof. ��
Because any CASL specification is a trivial extension of itself, we have the

following corollary to Theorem 9.3.2.

Corollary 9.3.1. If there is a well-formed modular proof-term p for the proof
of Sp � P

�LTT (SSL) pSp
P

then extractmod(p) is an extended realizer of Sp � P .

9.4 Extracting extended realizers

By adding additional axioms and symbols to a specification, we can add ex-
tracted programs back into a specification to form a conservative extension
while preserving consistency. This yields executable extensions of specifications.
This is a useful result for two reasons:

• This permits a systematic approach to consistent extension (extending a
specification while retaining consistency) and the reuse of previously ex-
tracted programs

• We need this result in order to synthesize provably correct SML terms from
all SSL proofs (including non-modular proofs). This is achieved by extracting
extended realizers.
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We use the results of the previous section to transform non-modular proofs
of the form

�SSL Sp �A

into modular proofs of the form

�SSL Sp′ �A

where Sp′ is a relatively consistent extension of Sp. This transformation will
require us to extend SSL and LTT (SSL) conservatively with an additional rule
and proof-term construct. Then, by extracting a modular realizer from the
resulting proof, we have the required extended realizer of Sp �A.

9.4.1 Extensions via extraction of modular realizers

We shall first show how relatively consistent extensions of specifications can be
given using the extraction of modular realizers.

When we extract a term extractmod(d) from a modular proof

� dSp
A

the equality fA = extractmod(d) and the formula Sk(A) can be added to Sp as
an axiom, and fA can be added to Sig(Sp). This will give a larger specification
Sp′ that is a relatively consistent extension of Sp.

This is formalized by the following theorem, which follows from the sound-
ness of SSL (Theorem 7.4.2 of Chapter 7) and our proof that modular proofs
yield realizers (Theorem 9.3.2 above).

Theorem 9.4.1. Given a proof

∅ � dSp
A

such that e = extractmod(d), then we have that Sp′ = NewSpec(Sp, A, e) is a
consistent extension of Sp, where NewSpec(Sp, A, e) is defined by

Sp then {〈fA : etype(A)}, ∅, ∅〉, {fA = e, Sk(A)}}
Proof. We can assume that Skolem function symbol fA does not occur in the
specification Sp (because, if it did occur, we could rename fA to something
else). The result then follows easily because

• the equation fA = e is a conservative extension of the original specification,
not affecting consistency.

• we have a proof that � Sp � Sk(A)[e/fA]. This means, for every model
M ∈Mod(Sp),

M |= Sk(A)[e/fA]

It can then easily be seen that, for any model C such that C|Sig(Sp) ∈
Mod(Sp) where
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C |= fA = e (9.63)

it must be the case that
C |= Sk(A)

So, because Mod(NewSpec(Sp, A, e)) is the smallest set of models C such
that C|Sig(Sp) ∈Mod(Sp) we know that these models are always consistent,
provided the models of Mod(Sp) are consistent.

��
Remark 9.11. Note that fA and e can be functions, in which case the equation
fA = e is a higher-order equation. This is permissible, because we assume CASL
is now extended to permit higher-order statements. If we did not permit this,
we would have to add an equation of the form

fA(−→x ) = e(−→x )

where −→x is the list all abstraction variables for the lambda term e in the spec-
ification.

9.4.2 New rules for consistent extension

We will require our logic and logical type theory to be extended with a new rule,
an additional constructor unextract, and new type inference rules. The new rule
provides a means of consistently extending a specification with an equational
definition for a function and a new axiom for defining behavior of the function.
In this way, the rule permits consistent extension by and reuse of extracted
terms in further proofs and synthesis.

The following is a new rule of SSL

� NewSpec(Sp, A, e) �A
(Sk)

(9.64)

where e is a modular realizer of Sp �A.
Also,

unextract(Sp, A, e)

is a new proof-term to LTT (SSL). for SML term e and specification/formula
pair Sp �A. We add

extractmod(unextract(Sp, A, e)) = fA

to the definition of extractSSL.
If e is a modular realizer of Sp � A, then we can apply a the following new

type inference rule of LTT (SSL) corresponding to the rule (Sk) in SSL

� unextract(Sp, A, e)NewSpec(Sp,A,e)
A
(Sk)
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These extensions given by the rule are conservative, in the sense that all
the important results about SSL and LTT (SSL) are preserved as shown by the
following lemma.

Lemma 9.4.1 (Preservation of known properties). The rules of LTT (SSL)
with the unextract construct, the additional type inference rule (Sk) and the
new extended definition of extractmod preserve the following theorems about
LTT (SSL):

1. Soundness for SSL (Theorem 7.4.2 of Chapter 7).
2. The Curry–Howard isomorphism (Theorem 5.2.5 of Chapter 8):
• Given a natural deduction proof D of �SSL Sp � A, we can construct a

well typed proof-term fSp
A.
• Given a well-typed proof-term fSp
A, we can construct a natural deduc-

tion proof D of ....
� Sp �A

3. Strong normalization and the Church–Rosser property (Theorems 8.2.9 and
2.3.7 of Chapter 8):

4. Extraction of modular realizers (Theorem 9.3.2 above).

Proof. Proof of item 1. We need only show that soundness holds for the new
rule of SSL, assuming soundness for the original rules. The rule (Sk) is derivable
from the (ext2) rule:

� Sp �A
Sp then {〈fA : etype(A)}, ∅, ∅〉, {fA = e}} ext2

and so soundness follows trivially.
Proof of item 2. The first part of Item (2) follows trivially from Theorem

5.2.5 of Chapter 8, because we do not need to use unextract in the derivation
of f . The second part of Item (3) follows because (Sk) has a matching rule in
SSL.

Proof of item 3. Strong normalization is preserved because we treat unextract
proof-terms in the same way as we treat the ax proof-terms — as constants that
cannot be reduced. The Church–Rosser property is preserved because, as with
ax proof-terms, there are no critical pairs introduced by unextract.

Proof of item 4. The new construct unextract still preserves extraction of
modular realizers. We add the following case to the proof of Theorem 9.3.2.
Assume we have a modular proof ending in (Sk),

� unextract(Sp, A, e)NewSpec(Sp,A,e)
A
(Sk)

We have that extractmod(unextract(Sp, A, e)) = fA. So, we need to show

NewSpec(Sp, A, e) |= Sk(A)
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Now, as e is a modular realizer, we already know that

Sp |= Sk(A)[e/fA]

By the semantics for extension, we can infer from this that

Sp then {〈fA : etype(A)}, ∅, ∅〉, {fA = e}} |= Sk(A)[e/fA]

which means
NewSpec(Sp, A, e) |= Sk(A)[e/fA] (9.65)

Now, by definition of NewSpec, we have fA = e as an axiom and so

NewSpec(Sp, A, extractmod(d)) |= fA = e (9.66)

It follows from (9.65) and (9.66) that

NewSpec(Sp, A, extractmod(d)) |= Sk(A)

as required. ��

9.4.3 Making proofs modular

We now show how to transform a proof

� dSp
A

into a modular proof
� d′Sp′
A

by using Theorem 9.4.1. This result will then be used to extract extended
realizers from any proof.

The transformation proceeds according to the proof of the following lemma.

Lemma 9.4.2. Given any term ∅ � dSp
A, there is a proof-term
� modular(d)Sp′
A such that modular(d) contains no non-modular subterms and
Sp Sp′.

Proof. We give a recursive definition of modular(d) using a depth-first traversal
of the proof tree encoded by d. (Recall that d is a proof-term and therefore
represents a natural deduction proof tree.)

Let n(t) be the total number of non-modular subterms in the proof-term t.
We define a terminating sequence of proof terms d = d0, ..., dk = modular(d).
Given di, we determine di+1 as follows.
Case 1. If di does not contain any non-modular subterm, then di+1 =

modular(d) = di (that is, the sequence terminates).
Case 2. Otherwise, normalize di to give a proof-term d′. As long as di has

no assumptions, the normalized proof-term d′ will contain no subterms of the
form hide((λx : A.p), Σ).
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1. Take the leftmost innermost non-modular subterm of the form t =
hide(e : B, Σ) in d′. That is, take the first non-modular subterm t in d′

which does not contain any non-modular subterms. So, e itself contains no
non-modular subterms.

2. Extract a modular realizer from e to yield a new SML term f = extractmod(e).
Let Sp ≡ NewSpec(sp(e), A, extractmod(e)). Then, in t, replace all occur-
rences of e by unextract(Sp, A, extractmod(e)), to give t′ =
t[unextract(Sp, A, extractmod(e))/e].
Note that t′ proves the same formula as t by the typing of unextract and
Lemma 9.4.1, but with a refined specification (adding the definition of fA =
extractmod(e)). The term t′ is modular because hidden symbols now do not
hide the function fA, which can be used in extractmod(t′).

3. Replace t by t′ in d′, to give di+1 = d′[t′/t]. Then di+1 has at least one less
non-modular subterm than di, and proves the same theorem as di.

Since n(di+1) < n(di), this process yields a k such that n(dk) = 0. Then we
take modular(d) = dk, which is a proof-term with no non-modular subterms.

Note that Sp′ is a conservatively correct extension of Sp by Lemma 9.4.1. So
the the final specification will be a conservatively correct extension of sp(d). ��

9.4.4 Extraction of extended realizers

The previous results can be used to extract correct SML terms from any SSL
proof. These terms are correct in the sense that they are extended realizers of
the proved specification/formula pairs.

Theorem 9.4.2 (Extraction of extended realizers). There is an extraction
map extractSSL from proof-terms to SML terms such that, given any proof

� dSp
A

it is the case that extractSSL(d) is an extended realizer of Sp �A,

extractSSL(d) extr Sp �A

Proof. The map extractSSL is defined according to the following sequence

1. Take any proof
� dSp
A

2. Apply Lemma 9.4.2, to transform d into a modular proof

� d′Sp′
A

where Sp Sp′
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3. Let extractSSL(d) = extractmod(d′). By Theorem 9.3.2 it is a modular realizer
of d′. So

Sp′ � Sk(A)[extractSSL(d)/fA]

4. Because Sp Sp′, extractSSL(d) is the required extended realizer of Sp �A.
��

Theorem 9.4.3. Take any proof

�LTT (SSL) dSp
A

Then
�SML extractSSL(d) : etypeA

is a correct type inference.

Proof. The theorem follows easily from Theorem 6.2.2 and the construction of
extractSSL. ��

9.5 Example: password checking system

We now demonstrate the extraction of modular and extended realizers using
the password checking system example of the previous two chapters.

For reference, we briefly summarize the domain description. In Chapter 7,
we specified a password system for an email hosting service, similar to the
example used throughout Chapter 2. When a user joins the service, he/she is
required to define a new numerical password. We restricted our attention to
the part of the system that defines when a password is of an acceptable length.
This password number must be 4 digits long (and so within the range of 0 and
9999). If the number chosen is not of the right length, the system will output
a response message asking the user to select a new number within the correct
range. If the number is within the correct range, then the system outputs a
response message to this effect.

An initial specification of the system’s password requirements, PwdCore,
was given in terms of subspecifications of the natural numbers, booleans and
strings, together with some axioms to model the domain (Example 7.6, p. 234,
Chapter 7). To restrict the specification of the system to the relevant functional-
ity, a final specification PwdSys was defined by hiding functions of PwdCore
that we did not wish exposed.

We developed a theorem in SSL about PwdSys: given any input x of a pass-
word, there is always an appropriate response message to be output explaining
whether the password is of the correct length or not (Section 7.3.6, pp. 245–
247 of Chapter 7). This theorem is a truth about the specification PwdSys,
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given known properties about its required behavior. However, to build an im-
plementation of the password checking system, we need to obtain a function for
producing such a message for given passwords. In isolation, the theorem does
not tell us what this function is.

We will now use our synthesis methods to extract such a password checking
function which outputs an appropriate response for a given password number
input.

We have seen how the proof of the theorem can be encoded as a term in
the logical type theory (Chapter 8, Section 3.2.1, p. 260). The proof-term for
the theorem involves a critical subterm because it involves proving the required
property over PwdCore and then applying (hide) to show the property holds
for PwdSys.

Consequently, we can extract an extended realizer from the proof of the
theorem for PwdSys. To do this, we first need to obtain a modified realizer for
the proof of the property over PwdCore.

We show how to extract a modified realizer from part of the proof about
PwdCore, and then an extended realizer from the proof about PwdSys. We
then show how the extended realizer can be used to build a consistent extension
of PwdSys.

9.5.1 Extracting a modular realizer

The main part of the proof described in previous chapters involved a derivation
of

� PwdCore � ∀x : nat • ∃y : string • V alidMsg(x, y) (9.67)

The Skolem form of the formula A = ∀x : nat • ∃y : string • V alidMsg(x, y) is

Sk(A) = ∀x : nat • V alid(x, fA(x))

Thus, by the definition of modular realizability, the theorem can be viewed as
a specification of a function fA that outputs an appropriate response message
for a given password number.

The proof of this theorem can be encoded as a typed proof-term of the form

� qPwdCore
∀x:nat•∃y:string•V alidMsg(x,y)

(see Section 7.3, pp. 245–247). where

q = use x : nat. case p4 of

inl(u).show(‘Password acceptable’, app(p7, app(p6, p5))),
inr(v).show(‘Please choose a password in correct range’, p8)

where p4 is of the form
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specific(ext1(union1(BtoB • (rec([T, F ], boolean,

[(inr(ax(NatBoolean, T = T ))), (inl(ax(NatBoolean, T = T )))])),
StringBool), 〈SExt, AExt〉), inRange(x))

The proof-term encodes constructive information obtained from the
(∃-I) applications used within the proof — in particular, the witness string,
y, for a valid message such that V alidMsg(x, y) given a password number x,
depending on the length of the password number.

By inspection, it can be seen that this proof-term is modular. We can apply
Theorem 9.3.2 to obtain a function

extractmod(q) =
fn x : nat =>
match rec([true, false], [inr(()), inl(())])inRange(x) with

Inl(xu) => ‘Password acceptable’,
Inr(xv) => ‘Please choose a password in correct range’

such that
PwdCore |= Sk(P )[extractmod(q)/fP ]

This function has the required property. For instance, because
inRange(9999) = true, we have that

PwdCore |= extractmod(q)9999 =
match (rec([true, false], [inr(()), inl(())])inRange(9999)) with

Inl(xu) => ‘Password acceptable’,
Inr(xv) => ‘Please choose a password in correct range’

⇒ PwdCore |= extractmod(q)9999 =
match true with

Inl(xu) => ‘Password acceptable’,
Inr(xv) => ‘Please choose a password in correct range’

⇒ PwdCore |= extractmod(q)9999 = ‘Password acceptable’
(9.68)

The last inference holds because equality in our models preserves �SML reduc-
tion and

match true with
Inl(xu) => ‘Password acceptable’,
Inr(xv) => ‘Please choose a password in correct range’

�SML ‘Password acceptable’

The inference (9.68) shows we have the correct property for input 9999 because

PwdCore |= V alidMsg(9999, ‘Password acceptable’)

and so
PwdCore |= V alidMsg(9999, extractmod(q)9999)
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9.5.2 Extracting an extended realizer

The conclusion of (9.67) specifies a function for PwdCore, which, although
specifying the password system, also exposes some extraneous functionality. To
encapsulate this functionality, we apply the (hide) rule to (9.67), obtaining the
final theorem about the specification PwdSys

� PwdSys � ∀x : nat • ∃y : string • V alidMsg(x, y) (9.69)

The resulting theorem still describes a function that outputs an appropriate re-
sponse message for a given password number, but for the specification PwdSys
of the encapsulated password system.

The proof of this theorem can be encoded as a typed proof-term of the form

� pPwdSys
∀x:nat•∃y:string•V alidMsg(x,y)

(see Section 7.3, pp. 245–247) where

p = hide(use x : nat. case p4 of

inl(u).show(‘Password acceptable’, app(p7, app(p6, p5))),
inr(v).show(‘Please choose a password in correct range’, p8),

{ge, inRange})
This proof-term is not modular, so we cannot extract a modular from the

proof. However, by applying Theorem 9.4.2, we can obtain an extended realizer
from p. This involves application of the process used in the proof of Lemma
9.4.2, to remove critical subterms of p. Essentially, we extend the specification
PwdCore with the function definition {fA = extractmod(q)}. By the nature of
our extraction process, this results in a consistent extension,

NewSpec(PwdSys, A, extractmod(q))

This process gives us the proof-term

p′ = unextract(PwdSys, A, extractmod(q))

with the theorem NewSpec(PwdSys, A, extractmod(q)) �A as type.
The required extended realizer is then

extractmod(p) = extractmod(p′) =
extractmod(unextract(PwdSys, A, extractmod(q))) = fA

which satisfies

NewSpec(PwdSys, A, e) � ∀x : nat • V alid(x, extractmod(p)(x))

where the specification NewSpec(PwdSys, A, extractmod(q)) is a consistent ex-
tension of PwdSys. This is the required function which, given any input x of
a password, outputs an appropriate response message explaining whether the
password is of the correct length or not.
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9.6 The Curry–Howard protocol for program synthesis

Our extraction map leads to an effective application of the Curry–Howard pro-
tocol for the synthesis of extended realizers from proofs of specifications. In this
section, we show this.

9.6.1 Logical and computational type theories

In the Curry–Howard protocol of Chapter 3, we gave a general framework for
program synthesis from proofs of specification that generalized state-of-the-art
proofs-as-programs.

The protocol requires a logical type theory and a computational type theory.
We take the logical type theory as the in LTT (SSL) of Chapter 8 (identified
as an LTT for SSL in Section 3.2.1 of Chapter 8, p. 81). We shall take our
computational type theory to be SML (as defined in this chapter).

9.6.2 Conformance to the Curry–Howard protocol

The Curry–Howard protocol (Definition 3.2.5, Chapter 3, p. 87) holds between
the LTT (SSL) and SML, for the following reasons

1. There are extraction maps etype from formulae of LTT (SSL) to the types
of SML and extractSSL from proof-terms of LTT (SSL) to programs of SML,

extractSSL : PT (LTT (SSL))→ Term(SML)
etype : Formulae(SSL)→ Type(SML)

such that, given a proof d ∈ PT (LTT (SSL)) such that

�LTT (SSL) dSp
A

then extractSSL(d) is a lambda term of SML, is of type etypeA. The map
etype was defined in Fig. 9.6. The map extractSSL is defined in the construc-
tion for the proof of Theorem 9.4.2, using the map extractSSL, which was
given in Fig. 9.7. The required typing property was shown in Theorem 9.4.3.

2. There is a realizability relation extr between programs and formulae, such
that, for any proof

�LTT (SSL) pSp
A

it is true that there is an extended realizer for Sp �A:

extractSSL(p) extr Sp �A

The realizability relation was identified in Definition 9.2.5. The required
property holds by Theorem 9.4.2.
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9.6.3 Application of the protocol

Recalling the process of protocol application described in Chapter 3, Section
3.3, p. 87, we have successfully taken the required steps:

1. We defined a signature and a logical calculus that involves the signature,
in Chapter 4. This involved deriving some properties that were orthogonal
to the protocol process itself, but which were necessary for deriving the
extraction theorem. Specifically, we provided a semantics for the calculus
(in Chapter 4) and proved soundness (in Chapter 5).

2. We defined a logical type theory for the logical calculus in Chapter 5.
3. We identified a programming language and described it by means of a com-

putational type theory in Chapter 4.
4. Finally, in this chapter, we completed the process by proving the Curry–

Howard protocol to hold over the above domains.

9.7 Discussion

We have shown how to synthesize correct SML functions from proofs about
CASL specifications. We have achieved one of the main goals of this part of the
monograph: adapting proofs-as-programs to SSL, building upon the results of
previous chapters. We applied the Curry–Howard protocol of Chapter 3 from
Part II. A new notion of realizability was given between SSL specifications and
formula pairs and SML functions. We then defined an extraction map from
proofs in the logical type theory of Chapter 8 to realizing SML functions, which
are terms of a computational type theory.

Additionally, we defined a method for incorporating extracted programs
back into a CASL specification, in order to develop partly executable extensions.

In Chapter 10, we will extend our calculus and its logical type theory to
accommodate parametrized specifications. We will show how the extraction
results of this chapter can be extended to that augmented calculus.

Our method of defining consistent extensions involved extracting functions
from a theorem and then adding them back into the theorem’s specification.
This leads to an intriguing possibility for program development: beginning with
an abstract, nonexecutable specification, a system designer could repeatedly
apply our method to derive a fully executable specification. Because our method
always produces consistent extensions, the final specification can be viewed as
a structured program that is provably correct. We will return to this question
in more depth in Chapter 11.
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Generic Specifications

In this chapter we extend our results to generic, parametrized specifications as
they are treated in CASL [CoF01].

Generic (parametrized) specifications permit the abstraction of specifica-
tions. Abstraction is an important concept in structured development of sys-
tems, because it facilitates the encapsulation of system components that are
applicable to a variety of problem domains.

Commonly, abstraction defines a system component with parameters to de-
note re-configurable parts. Then, by instantiation of the parameters, the ab-
stract component can be made concrete to suit a particular problem domain.
So a generic specification abstracts over a specification by parametrizing over
sub-specifications. The parameters are the aspects of the specification that are
open to change. The abstract generic specification is made more concrete by
instantiating these parameters.

There are two main approaches to parametrization in the algebraic specifica-
tion literature [Wir90, pp. 752–759]. The first method is by lambda abstraction,
where a parametrized specification is taken as a mapping from argument specifi-
cations to a result specification. We do not deal with this approach in our work.
The second approach, adopted by CASL, is by pushouts, where parametrization
is a generalization of the notion of unions and extensions. A generic specifica-
tion consists of a (fixed) main body in union with parameters that are open to
change. Instantiation is taken as a kind of translation of parameters.

CASL defines generic specifications via the concept of a named specification
— a structured specification that is given a name. Named specifications are an
important idea on their own as they permit the reuse of complicated specifica-
tions by simply referring to a name, without the need to rewrite specifications
in full. So we add new rules to SSL and its logical type theory, in order to reason
with generic and named specifications, and show how these preserve the strong
normalization and Church–Rosser properties, and finally show how to extract
correct SML terms from proofs.

We proceed as follows:
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• In Section 10.1 we summarize how generic and instantiated specifications
are represented in CASL through the concept of named specifications.

• Section 10.2 adds new rules to SSL to deal with named, generic, and instan-
tiated specifications. We discuss semantic issues, and show that soundness
is unaffected by our changes.

• Section 10.3 adds corresponding type inference rules to LTT (SSL). We dis-
cuss proof-theory issues, and show that the normalization and Church–
Rosser properties are unaffected.

• Finally, section 10.4 shows that we can still extract extended realizers from
proofs in the extended system.

Throughout this chapter we illustrate our techniques by two simple examples
(one, ultimately deriving from Sannella and Tarlecki in [TS89], of a specification
for a warehouse parametrized by a specification of a catalogue of parts stored
in the warehouse).

In the next chapter, we shall take extended versions of SSL and LTT (SSL)
and show how to produce executable refinements of specifications. We will then
give a method for refining non-generic specifications and generic specifications
into provably correct SML modules and functors, respectively.

10.1 Generic and instantiated specifications

In this section, we define named, generic and instantiated specifications as
treated in CASL [CoF01].

We define these constructions as structured specification expressions from
the collection CSpec defined in Section 7.2 of Chapter 7. This will enable us
to use the maps

Sig : CSpec→ CSig

and
Mod : CSpec→ {M ⊆Mod(Σ) | Σ ∈ CSig}

to give the visible signature and semantics of our new constructions.
Example 10.1 (Warehouse catalogue: domain considerations). For the purposes
of illustrating our ideas, we consider a very simple example, to be used through-
out this chapter and the next.

We shall specify and reason about a generic system for a warehouse that
houses parts. The warehouse supplies clients with replacements for faulty parts.
The warehouse keeps track of the parts by means of a catalogue that contains a
list of each part’s possible replacements, indexed by the part’s name. If a client
has a faulty part, the warehouse system’s catalogue can be used to locate a
replacement, using the faulty part’s name.

The system may be instantiated to work for a range of particular domains.
For instance, we may wish to use the system for the car manufacturing industry,
where warehouse parts are car parts; or for the textile industry, where parts are
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garments. Different warehouses can use different catalogues and involve different
types of part.

We shall therefore define the warehouse system as generic over a specification
of a catalogue and parts. To specify the essential elements of a catalogue, we
will require a specification of lists. Lists themselves will be given as a generic
specification.

10.1.1 Named and generic specifications

In the language of CASL, a generic specification is given through the notion
of a named specification, that is, a specification name with a definition for it.
Generic specifications are named specifications with parameter specifications.

A named specification is a specification with an associated name by which
it may be referred to in other specifications. In this way, named specifications
permit the reuse of specifications.

Definition 10.1.1 (Named and generic specifications). A named specifi-
cation is written

spec Sn[Sp 1] . . . [Sp n] given Sp′′ 1, . . . ,Sp′′ m =
Sp

end
(10.1)

where the Sp i (i = 1, . . . , n) are specifications, called the parameters for the
specification Sn, and the Sp′′ j (j = 1, . . . , m) are specifications, called the
imports for Sn. The specification Sp is called the body of Sn. If n = 0, there are
no parameter specifications Sp i, and Sn is said to be a non-generic definition,
otherwise it is called generic.

To keep a record of named specifications and what they refer to, CASL as-
sumes a global environment, consisting of a mutable set of named specification
declarations. When a named specification for Sn is defined, the global environ-
ment is extended to include the definition, provided a definition for Sn has not
been given previously. We shall adopt the following notation to deal with the
global environment.

Definition 10.1.2. We write Global to denote the global environment, and
then Global := Global ∪ {D} means that the global environment is extended by
the named specification definition D. We write Sn ∈ Global to mean that Sn is
defined in Global. Therefore Sn �∈ Global otherwise.

We understand the well-formedness and semantics of a named specification
as given by the imports extended by the union of the parameter specifications
and then extended by the body. That is, given Sn ∈ Global of the form (10.1)
in Definition 10.1.1, we define the visible signature of Sn to be

Sig(Sn) = Sig({Sp′′ 1 and . . . and Sp′′ m}
then {Sp 1 and . . . and Sp n} then Sp)
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Similarly, the semantics of Sn is

Mod(Sn) = Mod({Sp′′ 1 and . . . and Sp′′ m}
then {Sp 1 and . . . and Sp n} then Sp)

Remark 10.1. Note that, on their own, generic specifications are not considered
specification expressions — we are not permitted to apply union, translations,
hidings or extension to generic specifications. In order to build a specification
expression using generic specifications, each parameter has to be instantiated
in all references to a specification name Sp.
Remark 10.2. The declared parameters show just which parts of the generic
specification are intended to vary between different references to it. The imports,
by contrast, are fixed, and common to the parameters, body, and arguments.
This illustrates the difference between declaring parameters and leaving them
implicit in an extension of the form used to provide the semantics for generic
specifications.

Remark 10.3. A non-generic specification is a specification expression and may
be used to construct new specification expressions. In this case, we simply view
the non-generic specification Sn ∈ Global

spec Sn given Sp′′ 1, . . . ,Sp′′ m =
Sp

end
(10.2)

as shorthand for the expression

{Sp′′ 1 and . . . and Sp′′ m} then Sp

Example 10.2 (Warehouse catalogue: generic lists). Because a catalogue is a list
of parts, we need a specification of lists Lists: which we shall give first as a
generic specification.

First we assume a specification of the natural numbers, Nat. For conve-
nience we often omit irrelevant axioms, denoting them by an ellipsis . . . . We
shall build Lists as a generic specification of lists of elements of sort Elem that
contains an operation hd that returns the head of a list, on top of Nat:

spec Lists[{sorts Elem}] given Nat =
sorts List(Elem)
ops nil : List(Elem); cons : Elem× List(Elem)→ List(Elem);
hd : List(Elem)→ Elem; size : List(Elem)→ nat
preds ∈: Elem× List(Elem)
axioms ∀k : List(Elem) • size(k) > 0⇒ hd(k) ∈ k
. . .

We assume Lists is a specification name in the global environment.
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10.1.2 Instantiation

A non-generic specification may be used as a structured specification in place
of its definition body. However, a generic specification must be instantiated
in order to be used as a structured specification expression. CASL follows a
pushout approach to instantiation, consisting of a process of applying morphism
to “fit” a generic specification’s parameters with instantiating specifications and
then taking the pushout of the result.

Instantiation is done through fitting arguments ([CoF01], section 6.2.2). A
fitting argument for a parameter specification consists of an instantiating speci-
fication and a symbol mapping that defines a morphism between the signatures
of the two specifications.

Definition 10.1.3 (Fitting argument). Take two specifications Sp and Sp′.
Given a well-formed symbol mapping SM : Sig(Sp) → Sig(Sp)′ such that
M |SM ∈Mod(Sp) for every M ∈Mod(Sp′), we have that

Sp′ fit SM

is a well-defined fitting argument for Sp. We call SM the fitting morphism for
this fitting argument.

The form of an instantiated specification is as follows.

Definition 10.1.4 (Instantiated specifications). Instantiation of a generic
specification with name Sn, defined in Global, is written

Sn[FA1] . . . [FAn]

where FA1, . . . , FAn are well-defined fitting arguments from the parameters of
Sn

Sp 1 . . .Sp n

to a set of instantiating specifications

Sp′ 1 . . .Sp′ n

Remark 10.4. The instantiation is valid provided that Sn has been defined in
the global environment.

To understand the semantics of instantiation, we required the following defi-
nitions.

Definition 10.1.5 (Well-definedness of instantiations). We take the fol-
lowing instantiation of a generic specification with name Sn defined in Global:

Sn[FA1] . . . [FAn]

where
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spec Sn[Sp 1] . . . [Sp n] given Sp′′ 1, . . . ,Sp′′ m =
Sp

end
(10.3)

and Sp′ 1, . . . ,Sp′ n are the argument specifications for the fitting arguments.
Let Sp∗ stand for the imports and parameters extending body of Sn:

{Sp′′ 1 and . . . and Sp′′ m} then {Sp 1 and . . . and Sp n} then Sp
(10.4)

We define a morphism over Sn,

FM(Sn[FA1] . . . [FAn])

to be the morphism formed by the the fitting arguments extended to a mor-
phism applicable to the signature of Sp∗. When there is no ambiguity about
the instantiated specification referred to, we shall simply write FM for this
morphism.

We define Inst(Sn[FA1] . . . [FAn]) to be

Sp∗ with FM then {Sp′ 1 and . . . and Sp′ n} (10.5)

The instantiation Sn[FA1] . . . [FAn] is well-defined only when
Sig(Inst(Sn[FA1] . . . [FAn])) is a pushout of the body and argument signa-
tures of Sn.

This requirement is formalized as follows. Let

Σa = Sig({Sp′′ 1 and . . . and Sp′′ m} then
{Sp 1 and . . . and Sp n})

Σb = Sig(Sp∗)
Σp = Sig({Sp′′ 1 and . . . and Sp′′ m} then

{Sp 1′ and . . . and Sp n′})
Σi = Sig(Inst(Sn[FA1] . . . [FAn]))

Let FA denote the morphism formed from the fitting arguments extended with
identities over imports to now map Σa to Σp.

The instantiation is well-defined only when FM can be used as a morphism
in the pushout diagram:

Σa
i1 � Σb

Σp

FA

� i2 � Σi

FM

�

where i1 and i2 are morphisms from Σa to Σb and Σp to Σi, respectively. (For
our purposes, we may additionally require that these morphisms be injections.)
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Remark 10.5. The requirement on well-definedness in the previous definition
means that, if the translated body

{Sp∗ with FM}

and the union of the argument specifications

{Sp′ 1 and . . . and Sp′ n}

share any symbols, these symbols must be the result of applying FM to symbols
shared with

{Sp′′ 1 and . . . and Sp′′ m} then {Sp 1 and . . . and Sp n}

We understand the signature of an intantiation as

Sig(Sn[FA1] . . . [FAn]) = Sig(Inst(Sn[FA1] . . . [FAn]))

and the semantics of an instantiation to be

Mod(Sn[FA1] . . . [FAn]) = Mod(Inst(Sn[FA1] . . . [FAn]))

Remark 10.6. The difference between imports and parameters in a generic spec-
ification is shown by the semantics for instantiation. The symbols and axioms
of imports may be used by the parameters in a generic specification — and may
also be used by the arguments in an instantiation. However, they are fixed —
not permitted to change according to the fitting arguments. In contrast, the
parameters denote specifications that can be changed according to the fitting
arguments. In this way, they denote the parts of an abstract generic specifica-
tion that may vary according to the concrete application by the instantiation
mechanism.
Example 10.3 (Warehouse catalogue: instantiating lists to specify the catalogue
and the warehouse). We instantiate and extend Lists to give the specification
of the general form of a catalogue. We use lOR for the operation that provides
a list of replacements for a part, and Rep for the predicate meaning that one
part can be replaced with another, with their obvious semantics.

spec Catalogue = Lists[Elem �→ Part] then Sp

where Sp stands for

sorts Catalogue
ops myCat : Catalogue; lOR : Part→ List(Part)
preds Rep : Part× Part× Catalogue; In : Part× Catalogue
axioms ∀i, e : Part • e ∈ lOR(i) ∧ In(e, myCat)⇒ Rep(e, i, myCat);
∀i : Part • size(lOR(i)) > 0
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The specification of the generic warehouse system is then

spec Warehouse[Catalogue] =
ops rep : Part→ Part
axioms ∀i : Part • size(lOR(i)) > 0⇒ In(rep(i), myCat)

⇒ Rep(rep(i), i, myCat)

Given a faulty part name as input, the function rep uses the catalogue to obtain
a replacement part, if it exists.

Observe that the warehouse specification uses the general form of the cat-
alogue as a parameter. This general catalogue contains enough information for
us to adequately define the behavior of replacement searches in the catalogue.
To make the warehouse specific for a given problem domain we need only pro-
vide an appropriate definition of the catalogue specification, such that a fitting
argument can be given to the general form of catalogue.

When we refer to this specification, we shall sometimes denote the body of
the generic specification by BodyWare.

We assume Warehouse and Catalogue are specification names in the
global environment.

10.2 Extensions to logical calculus

We now extend the SSL calculus to cover generic specifications. Recall how, in
the case of structured specifications, we defined structural rules in SSL corre-
sponding to specification building operations. These rules involved changing the
specification for a known theorem � Sp � A to construct a new theorem about
a new specification. We proceed similarly, defining rules for construction using
generic and named specifications.

We are concerned with two kinds of construction done using these specifica-
tions: the definition of named (possibly generic) specifications and the instan-
tiation of generic specifications. Correspondingly, we give the following rules

• A rule for defining named, and consequently parametrized, specifications
(Defn).

• Two rules for instantiating a parametrized specification by fitting arguments
(Fit1) and (Fit2).

In addition, we will extend the axiom rule of SSL to allow us to use visible
axioms from named specifications.

The new rules are shown in Fig. 10.1, p. 350.

10.2.1 New specification/formula pairs

We extend the calculus to permit named (possibly generic) specifications. That
is, we now reason with pairs



10.2 Extensions to logical calculus 349

Sp �A

where Sp is any specification expression (including non-generic named specifica-
tions and instantiated specifications) or a generic named specification. That is,
conclusions of our theorems vary over elements of Pairs(SSL), redefined below.

Definition 10.2.1 (Pairs for new rules).

Pairs(SSL) =

⎧⎨⎩Sp � F |
Sp is a specification expression or a generic
specification and F is a formula from⋃

Σ∈CSig WFF (Σ, V ar)

⎫⎬⎭
10.2.2 Global environment

In CASL, the definition of a named specific specification extends the global
environment of available specification definitions. We formalize this by making
the following metalogical assumption. We assume that the mutable global en-
vironment state Global is defined at any stage of a proof. The state does not
change in any of the previously defined rules of SSL. However, upon application
of the (Defn) rule, the Global state is expanded to include a new specification
definition that may be used in subsequent stages of the proof.

10.2.3 Definition rule

The definition rule (Defn), see Fig. 10.1, p. 350, corresponds to the introduc-
tion of a new named specification. The formula is not affected, but the global
environment must now include the new name. Note that the actual final speci-
fication obtained in proving a given formula will depend on the order in which
the applications of (Defn) are introduced.

10.2.4 Fitting rules

The fitting rules1 (Fit1) and (Fit2) in Fig. 10.1, p. 350, corresponds to in-
stantiating the specification parameters Sp 1, . . . ,Sp n by the specifications
Sp′ 1, . . . ,Sp′ n. The morphism for the instantiation FM(Sn[FA1] . . . [FAn])
is as defined in Definition 10.1.5.
1 At WADT2001, Sannella pointed out that one can use the earlier rules to simulate

the effects of (Fit). While this is true our aim has always been to accommodate our
system to actual practice. Including the (Fit) rule explicitly allows the user to use
the standard apparatus of CASL directly.
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Let Sp∗ stand for the imports and parameters extending body of a named
specification Sn:
{Sp′′ 1 and . . . and Sp′′ m} then {Sp 1 and . . . and Sp n} then Sp

Γ � Sp∗ � A

Γ � Sn � A
Global := Global∪

{specSn[Sp 1] . . . [Sp n] given Sp′′ 1, . . .Sp′′ m =
Sp

end}

(Defn)

provided that the resulting Global contains only one definition of Sn.

Γ � Sn � B Sn ∈ Global
FM ‘Γ � Sn[FA1] . . . [FAn] � FM(B)

(Fit1)

where FM is the pushout morphism for the FAi, as described in Defi-
nition 10.1.5.

Γ � {Sp′ 1 and . . . and Sp′ n} � B Sn ∈ Global
Γ � Sn[FA1] . . . [FAn] � B

(Fit2)

where each Sp′ i is the argument specification for FAi.

Sn ∈ Global
∅ � Sn � A

(Ax∗ I)

where A ∈ Axioms(Sn)

Fig. 10.1. The new rules of SSL.

10.2.5 New axiom introduction rule

The third rule of Fig. 10.1, p. 350, allows us to use an axiom from the named
specification, even if the specification is generic. It extends the axiom rule but
we now have to ensure that Sn is in Global.

We require the following notation to speak about axioms of named specifi-
cations.

Definition 10.2.2. We write Axioms(Sp) to denote the set of visible axioms
in a structured specification Sp. If Sn names a generic specification, we write
Axioms(Sn) to denote the set of visible axioms in its body and imports. We
call the instantiation Sn[FA1] . . . [FAn] an unevaluated instantiation. We call
its expansion, given by the semantics above, an evaluated instantiation.

Remark 10.7. The axiom rule permits us to introduce axioms from a named
specification. After the introduction of an axiom, the full range of logical rules
is available for further reasoning about a named specification (generic or not).
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Note that these rules will not change the specification, but can be used to derive
new properties about it.

If the specification is not generic, we can also use any structural rule to build
new specifications and theorems from this named specification.

However, in CASL, a generic specification name is not considered to be
a specification expression to be used with the structuring operations (hiding,
extension, translation or unions). Consequently, the structural rules for hiding,
extension, translation and unions cannot be used with generic specifications.
The only structural rules available to a generic specification are the (Fiti) (i =
1, 2).

10.2.6 Soundness

Soundness of SSL with the new rules of Fig. 10.1 follows from the original proof,
due to the straightforward semantics of generic and instantiated specifications.

Theorem 10.2.3. The extended system of logical and structural rules is sound.

Proof. The proof is a simple extension of the proofs of Theorem 7.4.2 given in
Chapter 7.

Soundness of a proof ending in (Defn) follows because Mod(Sn) = Mod(Sp∗),
in

Γ � Sp∗ �A Sn �∈ Global
Γ � Sn �A

Global := Global∪
{specSn[Sp 1] . . . [Sp n] given Sp′′ 1, . . .Sp′′ m =

Sp
end}

(Defn)

For soundness of a proof ending in (Fit1),

Γ � Sn �B Sn ∈ Global
FM ‘Γ � Sn[FA1] . . . [FAn] � FM(B)

(Fit1)

take any

M ∈Mod(Sn[FA1] . . . [FAn]) = Mod(Inst(Sn[FA1] . . . [FAn])) =
Mod(Sp∗ with FM then {Sp′ 1 and . . . and Sp′ n})

By the IH, N |= B for any

N ∈Mod(Sn) = Mod(Sp∗)

By definition the semantics for translation and extension, it follows that M |=
FM(B).

We proceed similarly for the case of a proof ending in(Fit2).
The soundness of (Ax∗ I) is trivial. ��
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10.3 Extensions to the logical type theory

It is a simple task to extend the logical type theory for SSL to represent proofs
that use the new rules.

In this section we add new proof-terms and type inference rules correspond-
ing to the new rules. Types of LTT (SSL) now vary over the pairs used in the
new rules, consisting of formulae with named and instantiated specifications.
The Curry–Howard isomorphism is preserved, so that correct typing of a term
corresponds to a valid proof according to the rules of SSL.

We do not change the reduction relation over the resulting lambda calcu-
lus so the Church–Rosser and proof normalization theorems are trivially pre-
served. Further reductions are possible to eliminate redundancies in our proofs.
This is done by removing named and instantiated specifications with equivalent
structured specifications. We briefly discuss these reductions at the end of this
section.

10.3.1 New proof-terms and typing rules

We inductively extend the set of proof-terms of LTT (SSL) by means of four
new proof-term constructors:

name(p,Sn;Sp 1, . . . ,Sp n;Sp′′ 1, . . . ,Sp′′ m) naming
instantiate(p,Sn; FM) instantiation
ax(Sn, x) axiom

where Sn a specification name, Sp 1, . . . ,Sp n, Sp′′ 1, . . . ,Sp′′ m are specifi-
cation expressions, FM is a symbol mapping and p is a proof-term.

We type these rules with specification/formula pairs according to the rules
of Fig. 10.2.

It is easy to see that a well-typed proof-term uniquely determines the form of
an SSL proof of its type, and vice versa. That is, the Curry–Howard isomorphism
(Theorem 5.2.5 of Chapter 8) is preserved by the new type inference rules.

Theorem 10.3.1.
The Curry–Howard isomorphism:

• Given a natural deduction proof D of �SSL Sp �A, we can construct a well-
typed term fSp
A.

• Given a well-typed term fSp
A, we can construct a natural deduction proof
D of ....

� Sp �A

Recall three functions for determining proof information from a proof-term,
defined on page 259: given a proof-term d with a derivation

Γ �LTT (SSL) dSp
F

we can compute the following data from d
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Let Sp∗ stand for the imports and parameters extending body of a named
specification Sn:

{Sp′′ 1 and . . . and Sp′′ m} then {Sp 1 and . . . and Sp n} then Sp

Γ � pSp∗	A

Γ � name(p,Sn;Sp 1, . . . , Sp n;Sp′′ 1, . . . , Sp′′ m)Sn	A

Global := Global∪
{specSn[Sp 1] . . . [Sp n] given Sp′′ 1, . . .Sp′′ m =

Sp
end}

(Defn)

provided that the resulting Global contains only one definition of Sn.

Γ � pSn	B Sn ∈ Global

FM ‘Γ � instantiate(p,Sn; FM)Sn[FA1]...[FAn]	FM•B
(Fit1)

where FM is a fitting morphism for the FAi.

Γ � p{Sp′ 1 and ... and Sp′ n	B Sn ∈ Global

Γ � instantiate2(p, FA1, . . . , FAn)Sn[FA1]...[FAn]	B
(Fit2)

where each Sp′ i is the argument specification for FAi.

Sn ∈ Global {A} ∈ Axioms(Sn)

∅ � ax(Sn, A)Sn	A
(Ax∗ I)

Fig. 10.2. The type inference rules.

1. the current context con(d)
2. the specification sp(d) for which d is a derivation,
3. the derived formula, for(d)

These functions are easily extended to our new terms, as in Fig. 10.3.

10.3.2 Proof-term reductions

We do not add any additional rules to define the �SSL reduction relation over
proof-terms. Consequently, strong normalization and the Church–Rosser prop-
erty follow easily.

Theorem 10.3.2 (Strong Normalization and the Church–Rosser prop-
erty). The extended calculus is strongly normalizing and satisfies the Church–
Rosser property.
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sp(name(p,Sn;Sp 1, . . . , Sp n;Sp′′ 1, . . . , Sp′′ m)) = Sn

sp(instantiate(p,Sn; FM)) = Sn[FA1] . . . [FAn]

sp(ax(Sn, x)) = Sn

for(instantiate(p,Sn; FM)) = FM • for(p)

If {a : A} ∈ Axioms(Sn) for(ax(Sn, a)) = A

for(name(p,Sn;Sp 1, . . . , Sp n;Sp′′ 1, . . . , Sp′′ m)) = for(p)

con(instantiate(p,Sn; FM)) = FM • con(p)

con(ax(Sn, a)) = ∅
con(name(p,Sn;Sp 1, . . . , Sp n;Sp′′ 1, . . . , Sp′′ m)) = con(p)

FA1, ...FAn are the fitting argument specifications which can be recovered
from the fitting morphism FM .

Fig. 10.3. Extensions of the sp, for and con functions to new proof-terms.

Proof. Strong normalization follows trivially from the original proof, as the
new terms can be treated similarly to the other neutral terms. Church–Rosser
follows because the new terms do not introduce any critical pairs. ��

10.3.3 Extended logical type theory

We extend the logical type theory of Chapter 8 as follows:

LTT (SSL) =

〈PT (SSL), Pairs(SSL), (.)(.),�LTT (SSL), PTR(LTT (SSL)), �SSL, NR(SSL)〉
consisting of:

• a set of extended proof-terms PT (SSL),
• a set of types, taken as the extended pairs Pairs(SSL),
• a typing relation (.)(.) between proof-terms and types, so that if p ∈ PT (SSL)

has type (Sp � F ) ∈ Pairs(SSL), and we write pSp
F ,
• a type inference relation given by the original rules of �LTT (SSL) extended

by those of Fig. 10.2, and
• a reduction relation �SSL is unchanged.

10.3.4 Proof-term simplifications

In [PCW02] Poernomo, Crossley and Wirsing presented some additional re-
ductions for simplifying proofs that involve the new rules for generic specifica-
tions. These reductions involved matching definition and fitting rules, and then
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mapping instantiated specifications to a semantically equivalent specification
expression that does not involve a named specification. This changes the asso-
ciated conclusion specification, but provides a potential means for simplifying
proofs.

We can define these reductions via transformations over proof-terms. How-
ever, application of these transformations will change the resulting type, cor-
responding to a change in the conclusion specification. Consequently, we do
not include them in our reduction rules for �SSL, but instead permit them as
optional transformations that can be applied by the prover if required.
Remark 10.8. In this way, these reductions are similar to those described in
Section 8.2 of Chapter 8 (p. 270). These reductions result in changing the spec-
ification of the conclusion and so were not used in our normalization strategy.

We wish to reduce proof redundancies in which a generic specification is
defined (by an application of rule (Defn)) and then immediately instantiated
(by an application of the rule (Fit)). The form of such a proof is

....
Γ � dSp∗
A

Γ � name(d,Sn;Sp 1, . . . ,Sp n;Sp′′ 1, . . . ,Sp′′ n)Sn
A
(Defn)

FM ‘Γ � instantiate(d′,Sn; FM)Sn[FA1]...[FAn]
FM•A
(Fit2)

(10.6)

where d′ is

name(d,Sn;Sp 1, . . . ,Sp n;Sp ′′ 1, . . . ,Sp′′ n)

and

Global := Global ∪ {specSn[Sp 1] . . . [Sp n] given Sp′′ 1, . . .Sp′′ m =
Sp

end}

where Sp∗ is of the form given in Definition 10.1.5.
So, such a proof can be transformed to a proof (that does not use (Defn) or

(Fiti) (= 1, 2)):

....
ΓdSp∗
A

FM ‘Γd′
2
Sp∗ with FM
FM•A

(trans)

FM ‘Γ � d′
3
{Sp∗ with FM} and {Sp′ 1 and ... and Sp′ n}
FM•A

(union1)
(10.7)

where d′
2 = FM • d1 and d′

3 = union1(d′
2, {Sp′ 1 and . . . and Sp′ n}).

We justify this transformation by the semantics for instantiation: The
conclusion of the original proof (10.6) is equivalent to the conclusion of the
transformed proof (10.7). To see this, first observe that the formulae are
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identical. Also, the unreduced proof (10.6) concludes with the specification
Sn[FA1] . . . [FAn]. By the semantics for instantiation, this specification denotes
the concluding specification of the reduced proof (10.7). That is, the reduction
transforms the concluding specification from an unevaluated instantiation to an
equivalent, evaluated instantiation.

We also note that the premise of the original proof (10.6) is identical to the
premise of the transformed proof (10.7). Thus the transformation yields a proof
that does not use (Defn) or (Fit), yet proves the same conclusion from the same
premise.

This process may be formalized by defining a transformation mapping !
over proof-terms as follows:

instantiate(name(p,Sn;Sp 1, . . . ,Sp n;Sp′′ 1, . . . ,Sp′′ m),Sn; FM) ! INST1

where INST1 is the proof-term

union1(FM • p), {Sp′′ 1 and . . . and Sp′′ m}) and Sp′′ m}})))

We assume that all values in Global in the original proof remain defined in
the transformed proof, including any definitions made in discarded occurrences
of (Defn). We are required to make this assumption, because it is possible that
these definitions are used in other proofs. For example, in the proofs:

. . .

Γ1 � ax(Sn, x)Sn
C
(Axiom)

....
Γ2 � dSn
A

and
....

Γ3 � cSp∗	C
3

Γ3 � name(c3,Sn;Sp 1, . . . , Sp n;Sp′′ 1, . . . , Sp′′ m)Sn	C
(Defn)

FM ‘Γ3 � FM • name(c3,Sn;Sp 1, . . . , Sp n;Sp′′ 1, . . . , Sp′′ m)Sn[FA]	FM•C
(Fit)

....
Γ � bSp 2	B

the lower proof defines Sn to be the name of a generic specification over the
specification body Sp. That proof may be transformed, because the definition
is immediately followed by an instantiation. However, the definition of Sn must
still remain in Global, because it is required by the upper proof. We also wish to
reduce redundancies in proofs where a generic specification is defined in Global,
an axiom of the generic specification is introduced, and the generic specification
is then instantiated (by an application of the rule (Fit)). The form of such a
proof is
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Sn ∈ Global {a : A} ∈ Axioms(Sn)

Γ � ax(Sn, x)Sn
A
(Ax* I)

FM ‘Γ � instantiate(ax(Sn, x),Sn; FM)Sn[FA1]...[FAn]
FM•A
(Fit)

(10.8)

A must be an axiom of the body of Sn, its parameters, or one of its imports.
We only present the first case here as they are very similar. Such a proof can
be reduced to a proof with the body Sp of Sn instead of Sn and which does
not use (Fit):

A ∈ Axioms(Sp)

Γ � ax(Sp, a)Sp
A
(Ax* I)

Γ � d
{Sp′′ 1 and ... and Sp′′ m} then {Sp 1 and ... and Sp n} then Sp
A
1

(ext2)

FM ‘Γ � FM • dSp∗ with FM
FM•A
1

(trans)

FM ‘Γ � d′
3
{Sp∗ with FM} and {Sp′ 1 and ... and Sp′ n}
FM•A

(union1)
(10.9)

where

d1 = ext1(ax(Sp, x),Sp′′ 1 and . . . and Sp′′ m,Sp 1 and . . . and Sp n)
d3 = ext2(FM • d1,Sp′ 1 and . . . and Sp′ n)

The justification for this reduction is similar to that given for (Defn)/(Fit)
pairs. The reduction may be formalized by extending the reduction relation !
on proof-terms as follows:

instantiate(Axiom(Sn, x),Sn; FM) ! INST2

where INST2 is the proof-term

union1({Sp 1 and . . . and Sp n}, FM • ext2(p, {Sp′′ 1 and . . . and Sp′′ m}
then {Sp 1 and . . .Sp n}, Axiom(Sp)))

Remark 10.9. There are changes to all specification labels that follow either of
the reductions above. This is because, unlike the normalizing for structural rules
given in [WCP98], the proposed reductions result in conclusions with different
(but equivalent) specification labels. (Both reductions result in a change from
unevaluated instantiations to evaluated instantiations.)2

2 It is possible to make further reductions on the structure of a proof, by first moving
applications of (Defn) down proofs and then matching with applications of (Fit)
to apply the above reduction. We also observe that an application of (Defn) and
a logical rule (*), say, may be swapped, to give an equivalent proof. In fact the
swapping is transitive over multiple occurrences of (∗). Often, if there are several
applications of logical rules between the applications of the (Defn) and (Fit) rules,
then (Defn) can be swapped over each rule, matched with (Fit) and discarded.
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10.4 Structured proofs-as-programs revisited

In the previous chapter we adapted techniques for extracting programs from
constructive proofs to produce executable refinements of specifications. This
gave a method that used the (Sk) rule and unSkolemization to derive an exe-
cutable refinement for a given specification. We now extend this to the extrac-
tion of SML programs and to our calculus extended by the new rules.

We need only extend our modular extraction map extractmod over the new
proof-terms, as follows:

extractmod(instantiate(p,Sn; FM)) = FM • extractmod(p)
extractmod(instantiate2(Sn, FA1, . . . , FAn, p)) = extractmod(p)
extractmod(name(p,Sn;Sp 1, . . . ,Sp n;Sp′′ 1, . . . ,Sp′′ m)) = extractmod(p)

Extraction over proof-terms for (Ax* I) is the same as for (Ax I) (see Fig. 9.7,
p. 310), mapping to (), because we assume all axioms are Harrop.

The definition of modular proof-terms is unchanged for the new proof-terms.
Extraction of modular realizers from modular proofs still holds.

Theorem 10.4.1 (Extraction of modular realizers). Take any set of typed
proof-terms Γ = {uG1

1 , . . . , uGn
n }. We define Γ ′ to the corresponding set of

Skolemized formulae

Γ ′ = {Sk(G1)[xu1/fG1 ], . . . , Sk(Gn)[xun
/fGn

]}
If there is a well-formed modular proof-term p for the proof of Sp � P

Γ �LTT (SSL) pSp
P

then there is a proof

Γ ′ �SSL Sp � Sk(P )[extractmod(p)/fP ]

Proof. We extend the proof of Theorem 9.3.2 with additional cases to deal
with the new rules. If the proof ends in an axiom rule, then we have the result
trivially, as the conclusion formula must be Harrop.

We deal with the new rules similarly to the structural rules.
Case: (Fit1). Assume that the proof term pSp
P is of the form

instantiate(d,Sn; FM)Sn[FA1]...[FAn]
FM•B derived from a proof of the form

Γ � dSn
B Sn ∈ Global
FM ‘Γ � instantiate(d,Sn; FM)Sn[FA1]...[FAn]
FM•B

(Fit1)

By the IH, there is a proof

Γ ′ �SSL Sn � Sk(A)[extractmod(d)/fA] (10.10)

But, by definition, extract(p) is FM(extractmod(d)), and so (10.10) is the same
as writing
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Γ ′ �SSL Sp 1 � Sk(A)[FM−1(extractmod(p))/fA] (10.11)

By applying (Fit1) to (10.11), we obtain

FM ‘Γ ′ �SSL Sn[FA1] . . . [FAn] � Sk(A)[extractmod(p)/fA]

as required.
The case of (Fit2) is similar.
Case: (Defn). Assume pSp
P is of the form

name(d,Sn;Sp 1, . . . ,Sp n;Sp′′ 1, . . . ,Sp′′ m)Sn
A derived from a proof of the
form

Γ � dSp∗
A

Γ � name(d,Sn;Sp 1, . . . ,Sp n;Sp′′ 1, . . . ,Sp′′ m)Sn
A
(Defn)

with the Global environment defined by

Global := Global ∪ {specSn[Sp 1] . . . [Sp n] given Sp′′ 1, . . .Sp′′ m =
Sp

end

}

where this is an extension of Global if Sn had not been previously added. By
the IH,

Γ ′ � Sp∗ � Sk(A)[extractmod(d)/fA]

But extractmod(d) = extractmod(p), so we can apply (Defn) to obtain

Γ ′ � Sn � Sk(A)[extractmod(d)/fA]

as required. ��
Remark 10.10. The extraction map “ignores” the occurrence of the name proof-
term for the (Defn) rule and also the instantiate2 proof-term for (Fit2). So,
extracting a program from a proof that ends in an application of (Defn) is the
same as extracting a program from a proof without this application.

Our reasons are similar to those for the definition over structural unions.
The new rules do not affect the computational nature of the extracted term,
and, because the extracted term uses operations from the premise specification
that are a subset of the operations available to the conclusion specification, we
can still reason about the term using the conclusion specification.
Remark 10.11. The extraction map over the proof-term for (Fit1) applies the
fitting morphism FM , for a similar reason to the renaming structural rule. That
is, the constructive content is unchanged by the rule, but the morphism must be
applied in order to reason about the extract term using the new specification.

The extension of a specification expression by the definition fA = e,

NewSpec(Sp, A, e)
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is defined as before (Theorem 9.4.1 of the previous chapter, page 329). Note
that, because this is an extension of a specification expression Sp, Sp is never
a generic named specification.

By Theorem 10.4.1, the following rules are a conservative extension of SSL
and LTT (SSL) (in the sense of Lemma 9.4.1 of the previous chapter, page 331):

� NewSpec(Sp, A, e) �A
(Sk) (10.12)

for a modular realizer e of Sp �A, and corresponding type inference rule

� unextract(NewSpec(Sp, A, e), A, e)NewSpec(Sp,A,e)
A (Sk)

with
extractmod(unextract(Sp, A, e)) = fA

As before, we extract extended realizers from any proof by first transforming
the proof into a modular proof by repeated applications of (Sk) to eliminate
hidden terms that are used as witnesses for existential statements.

There is a complication because the (Sk) rule cannot be applied to proofs
that involve generic specifications. This is not a problem, because of the follow-
ing lemma, which tells us that, if the proof preceding the application of (Defn)
is modular, then the proof following the rule is modular as well.

Lemma 10.4.1. Take any proof-term ∅ � dSp
A. Assume d contains at least
one generic subterm and that each generic subterm of d of the form

name(p,Sn;Sp 1, . . . ,Sp n;Sp′′ 1, . . . ,Sp′′ m)

is such that p is modular.
Then d is modular.

Proof. By a simple induction on the derivation of d — the induction is simple
and is omitted here.

The idea is as follows. Non-modular proof-terms must contain proof-terms
corresponding to (hide).

However, because each generic subterm t of the form

name(p,Sn;Sp 1, . . . ,Sp n;Sp′′ 1, . . . ,Sp′′ m)

has a generic specification in its type, it cannot be used as a premise for any
structural rule. So d will not contain any subterms of the form

hide(e, SL)

with t as a subterm of e. ��
This lemma means that elimination of modular proof-terms by our process

of (Sk) application need only consider subterms that do not involve name. So
we have the following lemma.
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Lemma 10.4.2. Given any term ∅ � dSp
A, there is a term � modular(d)Sp′
A

such that modular(d) contains no non-modular subterms and Sp Sp′.

Proof. We give a recursive definition of modular(d) using a depth-first traversal
of the proof tree for d. (Recall that d is a proof-term and therefore represents
a natural deduction proof tree.)

Let n(t) be the total number of non-modular subterms in the proof-term t.
We define a terminating sequence of proof terms d = d0, ..., dk = modular(d).
Given di, we determine di+1 as follows.
Case 1. If di does not contain any non-modular subterm, then di+1 =

modular(d) = di (viz, the sequence terminates).
Case 2. Otherwise, normalize di to give a proof-term d′. As long as di has

no assumptions, the normalized proof-term d′ will contain no subterms of the
form hide((λx : A.p), Σ).

1. Take the leftmost innermost non-modular subterm of the form t =
hide(e : B, Σ) in d′. That is, take the first non-modular subterm t in d′

which does not contain any non-modular subterms. So, e itself contains no
non-modular subterms.

2. Extract a modular realizer from e to yield a new SML term f = extractmod(e).
Let Sp ≡ NewSpec(sp(e), A, extractmod(e)). Then, in t, replace all occur-
rences of e by unextract(Sp, A, extractmod(e)), to give

t′ = t[unextract(Sp, A, extractmod(e))/e]

The proof-term unextract(Sp, A, extractmod(e)) is well-typed.
Note that t′ proves the same formula as t by the typing of unextract and
Lemma 9.4.1, but with a refined specification (adding the definition of fA =
extractmod(e)). The term t′ is modular because hidden symbols now do not
hide the function fA, which can be used in extractmod(t′).

3. Replace t by t′ in d′, to give di+1 = d′[t′/t]. Then di+1 has at least one less
non-modular subterm than di, and proves the same theorem as di.

Since n(di+1) < n(di), this process yields a k such that n(dk) = 0. Then we
take modular(d) = dk, which is a proof-term with no non-modular subterms.

Note that Sp′ is a conservatively correct extension of Sp by Lemma 9.4.1. So
the final specification will be a conservatively correct refinement of sp(d). ��

As a consequence, we can always apply the above theorem to extract modu-
lar realizers from proofs that involve (Defn) — provided the proofs that precede
(Defn) are modular.

We extract extended realizers by the same process described by Theorem
9.4.2, Section 9.4 of Chapter 9, but now using Lemma 10.4.2 to remove modular
subterms. This gives us the required theorem.

Theorem 10.4.2 (Extraction of extended realizers). There is an extrac-
tion map extractSSL from proof-terms to SML terms such that, given any proof
� dSp
A it is the case that extractSSL(d) is an extended realizer of Sp �A.



362 10 Generic Specifications

It is easy to see that the new rules for SSL, the new proof-terms and typing
rules for LTT (SSL) and the extraction map extractSSL preserves satisfaction of
the Curry–Howard protocol, as identified to hold for the original system SSL in
Section 9.6 of Chapter 9.

10.5 Example: warehouse specification

We now illustrate the extended calculus and extraction theorem by contin-
uing our warehouse example. We shall derive the following theorem about
Warehouse:

�Warehouse � ∀i : Part • ∃y : Part • size(lOR(i)) > 0⇒
(In(y, myCat)⇒ Rep(y, i, myCat)) (10.13)

This theorem states that, if the list of replacements for a part i is of size greater
than zero, then there is a replacement part y in the warehouse catalogue that
can replace i in the catalogue. The theorem can be considered a specification
of a realizing function f

�Warehouse � ∀i : Part • size(lOR(i)) > 0⇒
(In(f(i), myCat)⇒ Rep(f(i), i, myCat))

We will use the extended calculus to simultaneously derive the formula and
construct the specification Warehouse. Using the Curry–Howard isomorphism
we represent this proof as a proof-term in the extended logical type theory from
which we shall then extract a realizing function.

For convenience we shall omit the contexts and Global.
We begin with the axiom for ∈ from the generic specification Lists:

� ax(Lists, l)Lists
∀k:List(Elem)•size(k)>0⇒hd(k)∈k

We instantiate the specification to obtain a theorem about ∈ for elements
of List(Parts) by applying the rule (Fit1), with the fitting argument [Elem �→
Parts], which yields the fitting morphism FM :

� instantiate(ax(Lists, l),Lists; FM)Lists[Elem�→Parts]	∀k:List(Parts)•size(k)>0⇒hd(k)∈k

We next apply (ext1) to this obtaining the same theorem over Catalogue
and (trivially) the (Defn) rule to get

� name(ext1(instantiate (ax(Lists, l),Lists; FM),BodyCat))(lOr(i))
(ax(Catalogue, c),Catalogue; ; )Catalogue
∀k:List(Parts)•size(k)>0⇒hd(k)∈k

and call this proof-term q4. We apply (∀-E) to this theorem with lOR(i) for k
and the formula obtained from the Catalogue axiom by (∀-E) to get:
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� ax(Catalogue, c)lOR(i)Catalogue
size(lOR(i))>0

Then these two theorems we apply (⇒-E) obtaining the formula

� q
Catalogue
hd(lOR(i))∈lOR(i)
5 (10.14)

where q5 = (q4(lOr(i)))((ax(Catalogue, c)lOR(i))).
Now we use the axiom for lOR given by Warehouse, labelling it with w.

Applying (∀-E) twice, with hd(lOR(i)) for e, we obtain:

� q
Catalogue
hd(lOR(i))∈lOR(i)⇒(In(hd(lOR(i)),myCat)⇒Rep(hd(lOR(i)),i,myCat))
6

where q6 = (ax(Warehouse, w) i)(hd(lOR(i)))).
Applying (⇒-E) to this formula and (10.14), we get

� q6q
Catalogue
In(hd(lOR(i)),myCat)⇒Rep(hd(lOR(i)),i,myCat)
5

We apply (ext1) to the axiom for lOR, extending Catalogue by the body of
the specification Warehouse, that is: BodyWare. We then apply (∃-I):

� p
Catalogue then BodyWare
∃y:Part•In(y,myCat)⇒Rep(y,i,myCat)
2

where p2 = show(hd(lOR(i)), ext1(app(q6, q5),BodyWare)).
Applying (∀-I) over the sequent gives us the goal formula with proof-term

p3 but with the specification Catalogue then BodyWare where

p3 = use i : Part. show(hd(lOR(i)), ext2(app(q6, q5),Catalogue))

We apply the (Defn) rule to the sequent, abstracting over Catalogue to
obtain the specification Warehouse, and our goal theorem

� p
Warehouse
∀i:Part•∃y:Part•In(y,myCat)⇒Rep(y,i,myCat)
4 (10.15)

with
p4 = name(use i : Part. (hd(lOR(i)),
ext2(q6q5,BodyWare)),Warehouse;Catalogue)

Now applying extract to the proof-term p4, gives the function

fn i => hd(lOR(i))

which returns the first element in the list of replacements for i. Here the func-
tion lOR is a parameter, coming from the particular catalogue chosen for the
warehouse specification.

Theorem 10.4.1 ensures this function satisfies the goal formula, in the sense
that

Warehouse |= ∀i : Part • In(extract(p4)(i), myCat) ⇒ Rep(extract(p4)(i), i, myCat)
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is true for Warehouse.
Observe that, because Warehouse is a generic named specification, we

cannot apply the (Sk) rule to extend it by this function. However, given a spec-
ification for Catalogue, we can instantiate Warehouse and then apply (Sk)
to extend the result with the function. For example, if we have a specification
for catalogues of car parts, CarCatalogue with a fitting argument FA from
Catalogue and CarCatalogue and corresponding morphism FM , we could
apply (Fit1) to (10.15), obtaining

� p
Warehouse[FA]	∀i:CarPart•In(FM(extract(p4))(i),carCat)⇒Rep(FM(extract(p4))(i),i,carCat)
5

(10.16)
with

p5 = instantiate1(Warehouse,

name(use i : Part. (hd(lOR(i)),
ext2(app(q6, q5),BodyWare)),Warehouse;Catalogue))

We obtain the extension

NewSpec(Warehouse[FA], A, extract(p5))

where A is ∀i : Part • ∃y : CarPart • In(y, carCat)⇒ Rep(y, i, carCat) and

extract(p5) = FM(extract(p4))

This extension permits us to use the function fA = extract(p5) in further rea-
sonings about the car parts warehouse.
Remark 10.12. Observe that the theorem (10.13) is an unSkolemized version of
the axiom for rep:

∀i : Part • size(lOR(i))⇒ (In(rep(i), myCat)⇒ Rep(rep(i), i, myCat))

In the next chapter we shall investigate the development of executable re-
finements from specifications using our extraction process. The idea is that, in
certain cases, if we extract a function for the unSkolemized form of an axiom for
a function, we can define the function to be equal to the realizer, producing an
executable, consistent refinement. We shall return to this example and derive
an executable refinement of Warehouse.

10.6 Discussion

We have treated generic specifications for reasoning and program synthesis,
presenting extensions to the structural rules of SSL that have permitted us to:

• reason about named and generic specifications by:
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— Defining named, possibly generic specifications and to conclude new
truths about the result from known truths about the body of the named
specification.

— Instantiating generic specifications and concluding new truths about the
instantiation from known truths about the generic specification.

• Extract extended realizers from proofs in our system, utilizing process of
the Curry–Howard protocol.

Generic specifications provide a useful abstraction mechanism for system de-
velopment. Our extensions are therefore valuable for reasoning and program
synthesis within the context of abstractions of system elements. Further, the
fact that our approach utilizes the Curry–Howard protocol represents another
justification for use of the protocol in adapting the proof-as-programs paradigm
to new logics and computational theories.

In the next chapter, we shall present an application of the process of ex-
tracting programs using proofs in SSL, to develop SML modules. The idea is
that structured and generic specifications employ structuring and abstraction
mechanisms that often parallel those used for developing structured (module-
based) SML programs. By extracting SML terms for every function used in a
specification, we shall show that it is possible to transform a CASL specification
into a SML module or functor.



11

Structured Program Synthesis

This chapter discusses how our calculus and the structured proofs-as-programs
results can be applied to give methods for structured program synthesis.

We will take structured programs to be executable CASL specifications —
specifications in which every function symbol has an executable definition as
a lambda term. The specification building operations are viewed as imposing
architectural structure over executable programs. We consider executable CASL
as an intermediate implementation language, with the possibility of further
translation to a conventional structured programming language such as SML
or C#.

We outline two complementary methods for the development of structured
programs:

• We give a process for the construction from new structured programs from
known structured programs, using the rules of SSL (including the Skolem-
ization rule to define consistent extensions using extraction).

• A specification can be refined to a specification that retains the signature
of the specification and includes all models of the original specification. We
define a process for the systematic refinement of abstract (non-executable)
specifications, repeatedly using SSL and extraction to obtain definitions of
all functions of a signature.

These methods apply different stages of the software development process. The
first method assumes we have a repository of structured programs, for use in
implementation-level reasoning about and construction of new structured pro-
grams. The second method involves a higher-level of abstraction and is useful
when we wish to develop structured programs from an abstract specification.
The approaches are related, because the programs in the repository should be
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correct — and one way of guaranteeing their correctness is to construct them
using our refinement methods.

One of the main aims of algebraic specification is to provide a formal basis
to support the systematic development of correct programs from specifications
by means of verified refinement steps. Our refinement technique is an important
and novel use of our extraction to achieve this goal. In general, when refining a
specification proving consistency can be very difficult. The great advantage of
our process is that consistency is guaranteed — provided, of course, the original
specification and the specifications used in a proof was consistent.

Also, our methods for reasoning about and constructing structured programs
shows that a logic such as SSL can be useful for reasoning and synthesis at the
implementation-level, as well as higher-levels, of program specification.

Because our methods involve structured programs, we must address their
architectural design issues. A software architecture comprises the design decis-
ions made about the structure and texture of software, defining how a system is
implemented as a configuration of components (see, e.g., [Ran00, pp. 10–12]). In
our context, components are basic executable specifications, and architectural
configurations are defined by structured specification operators. Our methods
require us to make design decisions about software architecture, using the lan-
guage of CASL. We therefore need to be careful that our methods yield archi-
tectures that conform to accepted design standards of intelligibility, coherence
and maintainability. This is possible because, in our methods, design decisions
are made through interactive application of SSL structural rules.

We proceed as follows:

• In section 11.1 we define the notion of an executable specification, and dis-
cuss how such specifications can be thought of as comprising a structured
programming language. We discuss the relation between implementation ar-
chitectures and specification structuring operators. We then outline a simple
process that uses SSL for reasoning about and synthesizing structured pro-
grams.

• In section 11.2 we show how to use SSL and program extraction for reasoning
about and synthesizing structured programs.

• Section 11.3 reviews notions of refinement for non-generic and generic spec-
ifications and presents our method of refinement based on program extrac-
tion. We identify some problems concerning how final implementation archi-
tectural design can be affected by the refinement process, and provide how
these problems can be avoided by considering implementation architectures
earlier in the refinement process. We illustrate our refinement techniques,
continuing with the warehouse example of Chapter 10.

• Conclusions are drawn in section 11.4.
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11.1 Structured programs

Structured programming languages are used to build systems from compo-
nents. As a minimal definition, a component is a cohesive (semantically related)
grouping of functionalities. The main activities of structured programming are
twofold:

• Definition of basic, atomic components. This activity occurs at a low-level
of granularity, and is primarily concerned with the traditional programming
task of function definition.

• Configuration of components to form larger, compound components. This
activity is of a coarser-grained nature, focusing on the definition of usage
relationships between components to construct larger components.

The second activity defines system architectures — that is, the the dependen-
cies, encapsulation and hierarchies that form a component configuration and,
ultimately, a component-based system.

There is a range of popular structured programming languages, some in
industrial use, such C++, Java or Visual Basic, and some of a more theoretical
nature, such as modular SML. By virtue of the fact that these languages are
structured, their operational and denotation semantics are complex.

Rather than introduce the syntax and semantics of a separate structured
programming language, in this chapter we shall simply consider a subset of
CASL — executable CASL — consisting of specifications in which every func-
tion symbol has a unique equational definition. We show that this subset ex-
hibits the features common to structured programming languages. Specifically,
we show that

• executable CASL can be equipped with a simple operational semantics
(11.1.1), and

• it facilitates the two activities of structured programming identified above:
construction of basic components (11.1.2) and of compound component ar-
chitectures (11.1.3).

Because these properties are satisfied, it is possible to extend the results of
this chapter to a conventional structured programming language by defining a
translation from executable CASL.

11.1.1 Executable CASL

Executable CASL consists of executable specifications. By an executable non-
generic specification we simply mean a specification in which every function has
an executable definition and every sort has free data type declaration (that is,
it is given by constructor functions). A generic specification is executable if its
body is executable.

We make these definitions formal as follows.
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Definition 11.1.1 (Executable specification). Let Sp A be a well-formed,
consistent specification in which every symbol is declared at most once.

Then,

1. If Sp A is non-generic then Sp A is called executable if, and only if,
a) for each visible1 sort symbol s used in Sp A, Sp A contains a basic or

partial specification in which s has a free data type declaration.
b) for each visible function symbol f of Sp A, there is a unique equational

definition
f = dec(f) ∈ Axioms(Sp A)

for some SML term dec(f)
c) every hidden subspecification in Sp A of the form

Sp hide SL

is such that Sp is executable.
2. If Sp A is generic of the form specSp B[Sp1] . . . [Spn] given Sp′′ 1 . . .

Sp′′ m = Sp, then Sp A is called executable if, and only if, Sp is executable.

Remark 11.1. Items 1b and 1c of the definition together entail that we have a
unique equational definition of every (visible or hidden) function of the given
specification.

When considering structured specifications as structured programs, we re-
quire a full operational semantics for functions. This semantics defines how a
function application will evaluate to an answer, with respect to a given exe-
cutable specification.

Recall that the lambda terms of our specifications are equipped with stan-
dard lambda reduction rules (see Fig. 9.3 in Section 9.1 of Chapter 9, p. 303).
These rules are used within our logic to equate terms modulo lambda reduction.
However, in isolation, these rules are not enough to define a satisfactory opera-
tional semantics, because they do not evaluate the application of a specification
function symbol. Function application can occur in the lambda terms of our
specifications. Because we assume function symbols always have an equational
definition, we should be able to use this definition to evaluate such applications.

To provide a full operational semantics of an executable specification, we
proceed as follows. We take the usual lambda reduction rules and extend them
to replace references to functions with their equational definitions, according to
the executable specification.

We define a reduction relation of the following form

Sp � f �̂ d

with the intended meaning that the term f evaluates to d in the context of
component Sp. This relation is given by the transitive closure of the following
rules that define a one-step reduction relation �.
1 Visible axioms and symbols are defined in Definition 7.2.2, Chapter 7, p. 236.
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First, our reduction relation preserves �SML.

f �SML d entails Sp � f � d (11.1)

where �̂SML is defined as in Fig. 9.3 of Chapter 9, p. 303.
Then, we add a rule that tells us we can replace a function with its equational

definition in an evaluation:

Sp � g[f/x] = g[dec(f)/x] (11.2)

if
f = dec(f) ∈ Axioms(Sp)

for the SML term dec(f).
Note that repeated application of � need not give a terminating sequence

of reductions. This occurs when two functions are mutually recursive without
a base case. So we let �̂ denote the finite transitive closure of �, if this closure
exists, otherwise we let it be the null relation.

The following lemma tells us that any property that we can prove about a
program g for the executable specification Sp, is also true of its final value.

Lemma 11.1.1. If
Sp |= P [g/x]

and
Sp � g �̂ k

then
Sp |= P [k/x]

Proof. This follows easily from the following facts

• we assume that the models of Sp equate interpretations of terms that are
reducable according to the lambda reduction �SML.

• For any function symbols g and f , given that

f = dec(f) ∈ Axioms(Sp)

it must be the case that interpretations of g[f/x] and g[dec(f)/x] are equal
under all models of Sp.

��
Remark 11.2. This lemma means that any statement that is provable about a
program is also true of the program’s evaluation, according to our operational
semantics.
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11.1.2 Specifications as software components

Software components are commonly defined as reusable entities that encap-
sulate a range of cohesive (semantically related) functionalities. Components
can be basic (atomic building blocks) or compound (constructed out of smaller
components).

A component enables clients to use its functionality by exposing an inter-
face. The interface describes the functions offered. At its most simple level, this
interface description takes the form of a signature list. At a more complicated
level, the interface description may involve descriptive annotations, such as En-
glish documentation, behavioral description (using, for instance, a CCS process
description or a UML activity graph), logical specifications of input/output
behavior or non-functional property descriptions [Szy98].

The executable specifications form components in accordance with this def-
inition. We can consider a specification’s signature, together with its visible
axioms, to form a component interface. The signature lists the functions avail-
able for a client and the axioms document this functionality.

Basic executable specifications are therefore the basic components of our
structured programming language.

A compound component is a component that is built from smaller com-
ponents, using the mechanisms of the structured programming language. In
executable CASL, we consider the structured and generic executable specifica-
tions as compound components. The specification structuring operators and the
naming and instantiation of generic specifications are our way of building larger
components from smaller ones. The way in which a compound component is
constructed, by the use of the structuring operators, comprises an architecture.

11.1.3 Architectures of executable specifications

An important area of software engineering research is concerned with under-
standing architectures of structured programs, for specification, construction,
analysis, and maintenance [MT00, KMND00, PRS02].

A software architecture is a hierarchical configuration of components, ex-
pressing usage relations between components and their interfaces. In general,
configuration can take many forms. We will consider four important patterns
of configuration

• Composition of components. This involves using two or more components
together to form a larger component that combines the components’ func-
tionality and interfaces.

• Wrapping of component interfaces. Functionality is redefined for use in new
context.

• Further encapsulation of interfaces. Functionality is hidden by constraining
exposure of interface description.
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• Abstraction and instantiation of components. A configuration of components
is parametrized by abstracting over required functionality that may then be
provided by a specific component via instantiation.

Composition is by far the most important means of building a software
architecture. For instance, in component based design, a compound component
is often specified first — to conform to an industry standard API, for instance.
It is then built by combining smaller components.

Wrapping and encapsulation are also important to rationalize and encap-
sulate aspects of the design in divide-and-conquer fashion. For instance, if we
wish to define a component with three functions, from two components each
with twenty functions, some form of wrapping and encapsulation is important.

Abstraction and instantiation are important for component reuse, providing
a means of developing generic components that suit a range of problem domains.

The structure of an executable specification defines its architecture as a
component, where:

• basic executable specifications are basic components,
• unions and extensions are the means of combining components,
• renaming permits wrapping and adaption of component interfaces,
• hiding provides encapsulation of functionality, by constraining the interface,

available to a component user, and
• generic named specifications and instantiated specifications are the means

of providing component abstractions.

Sp_A

Sp_B

Sp_A And Sp_B

Fig. 11.1. The architecture corresponding to unions of two executable specifications.

We can visually represent how these operations define design decisions about
component-based architectures. We represent components as boxes, with a list
of circles denoting the component interface. A basic component is an empty
box, while a compound component is a box that contains other components. A
line between component interfaces denotes a usage relation.

Then, the implementation architecture resulting from unions of executable
specifications is depicted as in Fig. 11.1. The two specifications are considered
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as components, with the union combining the components to form a compound
component, and exposing amalgamated union signature as an interface. The
final architecture is a compound component that is hierarchically composed
from two smaller components, using their functionality to define a larger range
of services. We consider the architecture of extensions to be similar.

The implementation architecture resulting from renaming of an executable
specification is given in Fig. 11.2 The specification is considered as a component,
with the renaming defining a wrapping of the component interface.

S
Sp_A

Sp_A with FM

Fig. 11.2. An implementation architecture resulting from renaming of an executable
specification.

The implementation architecture resulting from hiding of symbols in an
executable specification is depicted in Fig. 11.3. The specification is considered
as a component, with the hiding operator providing further encapsulation of
functionality through hiding parts of the component interface.

Sp_A

Sp_A Hide SL

Fig. 11.3. An implementation architecture resulting from hiding of symbols for an
executable specification.

In Fig. 11.4, the architectures resulting from (a) the definition and (b) in-
stantiation of a generic executable specification. In Fig. 11.4 (a), the specifi-
cation is considered as a template of a component, with the (possibly non-
executable) parameter specifications representing parameters that need to be
identified to make the template into a functioning architecture. In Fig. 11.4
(b), such a parameter argument has been found and is used to instantiate the
architecture to form a functioning architecture.
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Sp_A

Sp_B

spec SN [Sp_A] given
Sp_B = Sp

Sp

Sp_C

Sp_B

SN [FA]

Sp

(a) (b)

Fig. 11.4. Architectures corresponding to (a) the definition and (b) instantiation of
a generic executable specification.

In designing a component-based system for extension, it is vital that ar-
chitectures are designed carefully to address issues of optimal performance,
reuse and maintainability. In general, this is achieved by careful use of design
patterns for component composition, which are known to be appropriate for
a problem domain. In practice, the appropriateness of a pattern is usually a
judgment of the human designer, based on his/her experience of the domain
— see [GHJV95], for instance. The field of software engineering is still too
young for the fully automated design and configuration of appropriate software
architectures.

For our purposes, this means that we require that our methods for construc-
tion of structured programs permit the formation of an architecture through
interactive design decisions.
Remark 11.3. It is possible to define a further translation from executable CASL
to a conventional structured programming language such as SML or C#, for
compilation and integration with other software. Translation into these lan-
guages should preserve the architectural design decisions of executable spec-
ification components. Such a translation is possible — by virtue of the fact
that these languages permit the architectural patterns we have discussed. For
instance, it is possible to define a map from executable specifications to SML
structures and functors. Essentially, we discard axioms, taking an equational
functional definition as a function definition in a structure, and map specifica-
tion signatures or SML signatures.

Using that translation, it is possible to see that the structural and abstrac-
tion operations for executable specifications correspond to patterns for compo-
sition, encapsulation, wrapping, abstraction and instantiation of modules and
functors in SML.
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11.2 Reasoning about structured programs

We can use SSL and program extraction for reasoning about and synthesizing
structured programs. The idea follows simply because we consider executable
CASL as our structured programming language. So, if we restrict our SSL to
only reason about executable specifications, then our calculus and extraction
results constitute a method for specification of, reasoning about, and synthesis
of structured programs.

11.2.1 SSL for construction of components

By restricting our consideration to executable specifications only, the sequents
of SSL are viewed as statements about components. So,

� Sp �A

is understood as asserting that A is true of a component Sp.
The logical rules of SSL are then taken as a means of deducing new truths

about a component from its known properties. For instance, the (∧-I) rule
permits us to prove the conjunction (A∧B) about a component Sp, given that
we already have proofs of A and B from Sp:

Γ1 � Sp �A Γ2 � Sp �B

Γ1, Γ2 � Sp � (A ∧B)
(∧-I)

The structural rules are considered as a means of constructing new compo-
nents from old ones, and deducing a truth about the result. For instance, the
(union1) rule

Γ � Sp 1 �A
Γ � (Sp 1 and Sp 2) �A

(union1)

tells us that, if A is true about a component Sp 1, then A is also true about
the component composition of Sp 1 and Sp 2.

Because the structural rules are used to build components, they are our
means of designing new architectures. Under our view of specifications as com-
ponents, these rules treat components as black-box. For instance, in the (union1)
rule above, we assume both specifications Sp 1 and Sp 2 have already been de-
fined and are executable. The application of the rule combines components
and reasons with their interface information (signature and logical axioms).
However, the rule does not change or extend the interface or functionality of
a component. In this sense, the structural rules are not concerned with the
“inside” of a component — only with its interface.

To extend an architecture with additional required functionality, we use the
rule (Sk) and extraction:

� unextract(Sp, A, e)NewSpec(Sp,A,e)
A (Sk)
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where e is a modular realizer of Sp �A (obtained by extraction from the proof
of Sp �A) and NewSpec(Sp, A, e) is defined by

Sp then {〈fA : etype(A)}, ∅, ∅〉, {fA = e, Sk(A)}}

Under our view, extraction and (Sk) constructs a new component architecture,

NewSpec(Sp, A, e)

However, it also produces a new sub-component for use in this architecture,

{〈fA : etype(A)}, ∅, ∅〉, {fA = e, Sk(A)}}

The sub-component involves a single function and has an interface that provides
an axiomatization of this. This new component, when combined with Sp to give
NewSpec(Sp, A, e), results in “correct” architecture. By “correct,” we mean
that given that Sp is consistent, then the combination with the new component
is also consistent (this is true by Theorem 9.4.1 of Chapter 9, p. 329).
Remark 11.4. Our calculus is interactive. Proofs can be done by hand, or by
the use of encoding in interactive theorem prover, such as Isabelle [NPW02].
So the architectural design decisions made using the structural rules permit the
architect to exercise his/her design experience to build an optimal architecture.
On the other hand, use of the calculus ensures that the resulting architecture is
correct with respect to a set of required properties given by the derived formula,
or relatively consistent with respect to its derivation from other components.

11.2.2 Process of construction

Our methods suggest an approach to design and correct construction of software
architectures.

Given a repository of correct components (executable, consistent specifi-
cations), we can use our calculus to combine these components to obtain new
components that satisfy required properties, and then add the result back to the
repository, for component reuse. This leads to the following process, depicted
in Fig. 11.5:

Process 11.2.1. Take a repository consisting of a finite set of consistent, exe-
cutable specifications (components). We extend the repository to include a new
component by:

1. Repeatedly select components from the repository
2. Use SSL to simultaneously
• construct a larger component from the selected components and
• derive a required theorem about the result

3. Either
• add new specification back to the repository, or
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• use extraction and (Sk) rule to consistently extend the specification with
a functional definition of the realizer of the derived theorem

4. Add the resulting specification back to the repository.

By the nature of the rules of SSL, the resulting extended repository is still
consistent.

This process enables us to use SSL for component-based software develop-
ment and, in particular, correct component reuse.

2(a)

1

Choose executable specifications
from repository

2

Use SSL to
simultaneously
a) construct larger
executable
specification from
specifications
taken from repository,
and b) derive required
theorem about the result

Sp'

2
(b

)

3

Either a) add new specification back to the
repository, or b) use extraction and (Sk) rule to consistently extend
the specification with a functional definition of the
realizer of the derived theorem

4

4

Add the new specification
to the repository

Repository of executable specifications

SP_A

SP_B
Warehouse
[Catalogue]

Lists[Elem]

SP

Sp P3

3
(b

)

Fig. 11.5. Process of structured program synthesis

Example 11.1 (Password checking system). We consider how the process of
structured program synthesis would work for the two main examples used in
this part of the book.

Consider the password checking system example of the first three chapters of
this part. In Chapter 7, we specified a password system for an email hosting ser-
vice. An initial specification of the system’s password requirements, PwdCore,
was given in terms of subspecifications of the natural numbers, booleans and
strings, together with some axioms to model the domain (Example 7.6, p. 234,
Chapter 7). To restrict the specification of the system to relevant functionality,
a final specification PwdSys was defined by hiding functions of PwdCore that
we did not wish exposed.



11.2 Reasoning about structured programs 379

For the purposes of illustration, we shall assume that PwdCore and
PwdSys are executable specifications – all function symbols used in these spec-
ifications have executable definitions. This can be achieved simply by adding
appropriate function definitions for the boolean, string and integer specifica-
tions.

We developed a theorem in SSL about PwdSys:

� PwdSys � ∀x : nat • ∃y : string • V alidMsg(x, y) (11.3)

This specified that, given any input x of a password, there is always an ap-
propriate response message to be output, explaining if the password is of the
correct length or not (Section 7.3.6 of Chapter 7). We encoded our proof as
a term in the logical type theory for SSL (Chapter 8, Section 3.2.1, p. 260).
Finally, we used our synthesis techniques to extract a realizing function for the
theorem (Chapter 9, Section 9.5).

Because the proof-term for the theorem involved a critical subterm, we ex-
tracted an extended realizer from the proof of the theorem for PwdSys. To do
this, we first need to obtain a modified realizer f for the proof of the required
property over the subspecification PwdCore, defined

fn x : nat => match rec([true, false], [inr(()), inl(())])inRange(x) with
Inl(xu) => ‘Password acceptable’,
Inr(xv) => ‘Please choose a password in correct range’

such that
PwdCore |= Sk(P )[f/fP ]

By application of the (Sk) rule, it is possible to obtain

unextract(PwdSys, A, extractmod(q))NewSpec(PwdSys,A,extractmod(q))
A

The new specification is a relatively consistent extension of PwdSys:

PwdSys NewSpec(PwdSys, A, f)

The application of the (Sk) rule corresponds to taking an implementation step
in defining the password checking system, adding a correct function definition
to the specification.

Now because we have assumed PwdCore and PwdSys are executable spec-
ifications, we have that NewSpec(PwdSys, A, f) is also executable. If PwdSys
is taken from a consistent repository of specifications, then, following our pro-
cess, NewSpec(PwdSys, A, f) may be added back to the repository without
affecting consistency.
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11.3 Using extraction to obtain executable refinements

A specification can be refined to a specification, which retains the signature
of the specification and includes all models of the original specification. Given
certain kinds of specification expressions, we can obtain consistent refinements
of specifications by the techniques of Chapter 9 (extended in Chapter 10).

Our refinement steps are given through the proof and extraction process.
Briefly, our method of refinement is as follows. Given a (possibly parametrized)
specification Sp with universal axioms and given a function symbol f in the
body of Sp, we collect all the visible axioms for f into a formula, say ∀x :
s •A(x, f(x)). Then we build a modular proof of the unSkolemization

Sp′ � ∀x : s • ∃y •A(x, y)

using our calculus for some extension of Sp. From this proof, we extract a
lambda term as a modular realizer. We then extend the specification Sp′, defin-
ing f to be equal to this term, and restrict the resulting signature to be the
same as the original specification Sp. By virtue of the fact that the lambda term
is a modular realizer, this is a consistent refinement of Sp with an executable
definition of f . By repeating this process for all functions, we obtain a final
executable refinement of the specification.

Our refinement method will not work for all specifications — we need to
consider a subset, the properly encapsulated specifications. These are specifica-
tions where, given a function that is yet to be programmed, all axioms defining
its behavior are visible.

Before explaining our method, we formalize the concept of refinement and
proper encapsulation.

11.3.1 Refinements

The notion of refinement can be given as a partial order over specification ex-
pressions. One specification implements another if it shares the same signature
and includes the model classes.

Definition 11.3.1 (Specification refinements). A specification Sp 1 is said
to be a refinement of a specification Sp (written Sp � Sp 1) if

• Sig(Sp) = Sig(Sp 1).
• all models of Sp 1 (restricted to Sig(Sp)) are also models of Sp — that is,

when every C ∈Mod(Sp 1) are such that C|Sig(Sp) ∈Mod(Sp).

We say a refinement Sp � Sp 1 is relatively consistent if, assuming all
Mod(Sp) is consistent, then so is Mod(Sp 1).

This definition can also be made to apply to generic named specifications,
because Sig and Mod are defined over these specifications.

Note that, according to this definition, a refinement of a generic specifica-
tion need not itself be generic. It is interesting to consider refinements of generic
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specifications that preserve the generic structure. This notion of generic refine-
ment is now defined.

Definition 11.3.2 (Generic refinement). Let Sn be the name of a generic
specification defined by

specSn[Sp 1] . . . [Sp n] givenSp′′ 1 . . .Sp′′ m = Sp

Now define a new generic specification Sn′ by

specSn′[Sp 1] . . . [Sp n] given Sp′′ 1 . . .Sp′′ m = Sp′

Then Sn′ is said to be a generic refinement of Sn if, and only if, for all fitting ar-
guments FA1, . . . , FAn, Sn′[FA1] . . . [FAn] is a refinement of Sn[FA1] . . . [FAn].
We write Sn′ " Sn in this case.

Lemma 11.3.1. Specification building operators are monotonic with respect to
�. That is, for any specification expressions Sp 1, Sp 1, Sp 2 and Sp 2′, if
Sp 1 � Sp 1′ and Sp 2 � Sp 2′, then

Sp 1 and Sp 2 � Sp 1′ and Sp 2′

Sp 1 then Sp 2 � Sp 1′ and Sp 2′

Sp 1 hide SL � Sp 1′ hide SL
Sp 1 with ρ � Sp 1′ with ρ

Proof. As in [Cen94, p. 172]. ��

11.3.2 Proper encapsulation

A specification is properly encapsulated by hiding a symbol list when each vis-
ible function symbols has its axioms’ visibility preserved, or else is already
executable.

Definition 11.3.3 (Proper encapsulation). Let Sp be a specification, and
SL a symbol list. We say that Sp is properly encapsulated by SL when, for
each f ∈ Sig(Sp hide SL), either

1. each axiom in Axioms(Sp) that involves f is also an axiom in
Axioms(Sp hide SL), or

2. f has an executable definition in Sp.

A specification is properly encapsulated if every subspecification of the form
Sp hide SL is such that Sp is properly encapsulated by SL.

If the function has no definition, we should expose all information about the
function’s behavior for the purposes of refinement.
Remark 11.5. This definition restricts the hiding of functions and axioms. Given
a properly encapsulated specification, all hidden functions have executable def-
initions. All visible functions have an axiomatization with no hidden axioms —
we do not permit axioms for visible functions that involve hidden symbols.
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11.3.3 Refinement method

Given a properly encapsulated specification Sp, we can construct an executable
specification Sp exec such that SP � Sp exec.

Rather than attempting to achieve this in a single step, we proceed system-
atically in a stepwise fashion, incorporating more and more design and imple-
mentation decisions with each step. These include choosing between the options
of behavior left open by the specification, between the algorithms that realize
this behavior, between data representation schemes, etc. Each such decision is
recorded as a separate step, typically consisting of a local modification to the
specification.

So, developing structured programs from a specification then involves a se-
quence of such steps:

Sp 0 � Sp 1 � Sp n

Here, Sp = Sp 0 is the original specification of requirements and each Sp i-1 �

Sp i for any i = 1, . . . , n is an individual refinement step. The aim is to reach a
specification that is an exact description of an algebra. Our our case, the exact
description is given by an executable specification.

Each of these steps involve deriving the definition of a function as construc-
tive witness for the unSkolemized form of the axioms for a function, then adding
the definition back into the specification to yield a consistent refinement. This
process follows according to the proof of the following theorem.

Theorem 11.3.4. Let Sp be a specification expression that is properly encap-
sulated by SL with Ax = Axioms(Sp) and Sig(Sp) = 〈S, TF, P 〉.

Take a nonexecutable f ∈ TF/SL and let Df be the conjunction of every
axiom in Ax that involves f .

Take a proof
� d(Sp then Sp′)
A (11.4)

such that Sk(A)[f/fA] = Df , Sp′ is some specification expression and where
Sp then Sp′ is a consistent implementation refinement of Sp, and Sp′ does not
have f as a visible symbol.

As the proof d must be modular, there is a modular realizer extract(d) such
that

Sp then Sp′ � Sk(A)[extract(d)/fA]

Then

Sp � (NewSpec((Sp then Sp′), A, e) with [fA �→ f ])

is a consistent refinement of Sp and is properly encapsulated.

Proof. First note that, by the definition, NewSpec(Sp then Sp′, A, e) is a re-
finement of Sp. So we need to show that this is a consistent refinement.
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First, because we have an SSL proof (11.4), and we assume that all applica-
tions of structural rules in our proofs preserve consistency, we can assume that
Sp then Sp′ is consistent.

Then, by Theorem 9.4.1 of Chapter 9 (p. 329), we have that

NewSpec(Sp then Sp′, A, e) (11.5)

is consistent. Assuming the normal form of this specification is

nf(NewSpec(Sp then Sp′, A, e)) = 〈Σ, Ax〉 hide SL (11.6)

we know that 〈Σ, Ax〉 hide SL is consistent (because normal forms preserve
model classes), and contains more than the trivial model.

It remains to show that the renaming

NewSpec(Sp then Sp′, A, e) with [fA �→ f ] (11.7)

is consistent. It is enough to show that

Mod(NewSpec(Sp then Sp′, A, e) with [fA �→ f ])

contains more than the trivial model.
Let ρ be the identity over all of Σ, except over fA, where ρ(fA) = f . It can

be seen by (11.6), that the normal form of (11.7) must be

nf(NewSpec(Sp then Sp′, A, e) with [fA �→ f ]) = 〈ρ(Σ), ρ(Ax)〉 hide SL

〈Σ/fA, Ax/{Df [fA/f ], fA = e} ∪ f = e〉 hide SL (11.8)

because we can assume that the hidden symbols SL do not contain fA.
Now, as (11.5) is consistent, there is a non-trivial model

N ∈Mod(〈Σ, Ax〉 hide SL)

but, by the semantics of specifications with hide, this must be the reduct of a
non-trivial model

M ∈Mod(〈Σ, Ax〉)
We construct a non-trivial model M ′ of 〈Σ/fA, Ax/{Df [fA/f ], fA = e} ∪

f = e〉 from M . We define M ′ from M so that

sM ′
= sM s a sort of Σ/fA

RM ′
= RM R a predicate of Σ/fA

gM ′
=

{
fM

A if g is function symbol f
gM if g is any other function symbol

Now,
M |= Ax/{Df , Df [fA/f ], fA = e}
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but because Df , Df [fA/f ], fA = e are the only axioms in Ax that involve f and
fA, it can be seen that

M ′ |= Ax/{Df , Df [fA/f ], fA = e} (11.9)

But also, by definition of M ′, it can be seen that, as

M |= Df [fA/f ], fA = e

it must be the case that
M ′ |= Df , f = e (11.10)

So (11.9) and (11.10) show that there is a non-trivial model M ′ for the
specification

〈Σ/fA, Ax/{Df [fA/f ], fA = e} ∪ f = e〉
It follows from this that, by hiding the list of hidden symbols for the normal
form (11.8), we have a non-trivial model for (11.7) as required. ��
Remark 11.6. Observe that Theorem 11.3.4 will fail to hold if the specification
to be refined, Sp, is not properly encapsulated. Because we will use repeated
applications of this theorem to obtain refinements, this means we must only
consider a refinement process that begins with a properly encapsulated specifi-
cation.

If Sp is not properly encapsulated, the visible axioms for f , Df , will not
be all axioms in the normal form for Sp, and so the normal form (11.6) in the
proof

nf(NewSpec(Sp then Sp′, A, e)) = 〈Σ, Ax〉 hide SL

will contain axioms in Ax for f in addition to Df . So the fact that we know
Df [fA/f ] is true for models of (11.6) is not enough to entail that (11.9) is true

M ′ |= Ax/{Df , Df [fA/f ], fA = e}

for the model M ′ that takes fA and f to denote the same object.
Remark 11.7. Note that implicit axioms obtained from schema are always
preserved across functions. They need not be proved or unSkolemized. This
is because, if I is an implicit axiom, then Sp � I[f/x], Sp � I[fA/x], and
Sp � I[extract(p)/x] will all hold.
Remark 11.8. In Theorem 11.3.4, consistency of the refined specification is guar-
anteed, provided we assume consistency of the extension Sp then Sp′ has been
verified during its derivation in the proof (11.4):

� d(Sp then Sp′)
A

If instead we prove the unSkolemized axioms A with respect to Sp

� dSp
A
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then the refinement is consistent only with respect to the consistency of Sp (not
with respect to some extension). Thus, use of the extension introduces extra
consistency obligations in the derivation, but enables the use of other structured
specifications that may help in the derivation.

We use this theorem to define a refinement process for non-generic properly
encapsulated specifications as follows.

Process 11.3.5. Let Sp be a non-generic properly encapsulated specification.
Let R denote a finite set of executable specifications.
We define the following refinement process

Sp = Sp 0 � Sp 1 � Sp n = Sp ex

where Sp ex is an executable specification

1. Let i = 0.
2. Take the first visible function symbol f in the specification Sp i that is not

executable.
3. Let Df be the conjunction of all the visible axioms for f , and let A be the

unSkolemized form of Df — so that Sk(A) = Df [f/fD].
Prove the theorem

� p(Sp then Sp′)
A (11.11)

so that Sp′ ∈ R is some specification expression where Sp then Sp′ is a
consistent refinement of Sp, and where Sp′ does not have f as a visible
symbol.

4. Use Theorem 11.3.4 to obtain a refinement specification

Sp i+1 = (NewSpec((Sp then Sp′), A, e) with [fA �→ f ])

as a consistent refinement of Sp i.
Then Sp i+1 has one less nonexecutable function than Sp i.

5. If Sp i+1 is executable, then n = i + 1 and we are done. Otherwise, let
i = i + 1 and continue as in step 2.

The nature of this process guarantees that the refinement process will ter-
minate, as each refinement will have strictly one less non-executable function
symbol than the last, provided we can find proofs of the form given by (11.11).

We now extract programs for every function declared in the imports Sp′′ 1,
. . . , Sp′′ m or in the body Sp.

Process 11.3.6 (Executable refinements from a generic specifica-
tion).
Suppose Sn names a consistent, generic specification of the form

specSn[Sp 1] . . . [Sp n] given Sp′′ 1 . . .Sp′′ m = Sp,

where Sp′′ 1 . . .Sp′′ m are executable, all the sorts declared in the body of Sp
are basic or have free datatype declarations and the unSkolemized versions of all
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the axioms of Sp can be proved using only executable specifications and the pa-
rameter specifications. Then we can obtain a consistent, executable refinement,
Sn exec, that is a conservative extension of Sn.

We sketch the process for producing a chain of refinements Sn = Sn 0 "
Sn 1 " . . .Sn n = Sn exec. We shall assume that each Sn i is of the form

specSn i[Sp 1] . . . [Sp n] given Sp′′ 1 . . .Sp′′ m = SpBody i.

1. Given the properly encapsulated generic specification Sn i, take any func-
tion f in SpBody i for which there is no executable definition.

2. Prove the unSkolemization, Af , of the conjunction, Df , of all the visible
axioms for f to give a proof

� Sp′′ �Af

where

Sp′′ = {Sp′′ 1 and . . . and . . .Sp′′ n} then

{Sp 1 and . . . and . . .Sp m} then SpBody i then Sp′

and where Sp′ ∈ R is an executable specification from the repository.
3. Apply Theorem 11.3.4 to obtain a consistent refinement

Sp i+1′ = (NewSpec((Sp′′ then Sp′), Af , e) with [fA �→ f ])

because fA does not occur in Sp′′, this specification has the same signature
and model classes as

Sp i+1′′′ = Sp′′ then Sp′ then

(〈〈∅, fA : etype(Af ), ∅〉, {Df [fA/f ], fA = e}〉) with [fA �→ f ]
= {Sp′′ 1 and . . . and . . .Sp′′ n} then

{Sp 1 and . . . and . . .Sp m} then Sp i+1′′′′

with

Sp i+1′′′′ =
SpBody i then Sp′ then

(〈〈∅, fA : etype(Af ), ∅〉, {Df [fA/f ], fA = e}〉) with [fA �→ f ]

4. Now set

Sn (i + 1) = specSn′ i[Sp 1] . . . [Sp n] given Sp′′ 1 . . .Sp′′ m
= Sp i+1′′′′

Then Sn (i+1) is a refinement of Sn i which, by construction is a conservative
extension. Each Sn (i + 1) contains one less non-executable function than the
previous Sn i, so the chain of refinements must terminate at some finite stage
r, say, so that Sn r = Sn exec, as required.
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Example 11.2 (Refinement of the warehouse specification). Consider the ware-
house example of the previous chapter, given by the generic specification
Warehouse,

spec Warehouse[Catalogue] =
ops rep : Part→ Part
axioms ∀i : Part • size(lOR(i)) > 0⇒ In(rep(i), myCat)

⇒ Rep(rep(i), i, myCat)

Given a faulty part name as input, the function rep uses the catalogue to obtain
a replacement part, if it exists.

In Section 10.5 of that chapter we derived the following:

� pCatalogue then BodyWare
A
3 (11.12)

with a proof-term of the form

p3 = use i : Part. show(hd(lOR(i)), ext2(app(q6, q5),Catalogue))

where A is

∀i : Part • ∃y : Part • In(y, myCat)⇒ Rep(y, i, myCat)

This theorem is the unSkolemized form of the axiom for rep, Drep

∀i : Part • size(lOR(i)) > 0⇒ In(rep(i), myCat)⇒ Rep(rep(i), i, myCat)

in the warehouse specification body.
Because the proof-term is modular, there is a modular realizer of (11.12)

such that

Catalogue then BodyWare |=
∀i : Part • In(extract(p3)(i), myCat)⇒ Rep(extract(p3)(i), i, myCat)

We can apply Theorem 11.3.4 to obtain a refinement

Catalogue then BodyWare �

(NewSpec((Catalogue then

BodyWare), A, extract(p3)) with [fA �→ rep]) (11.13)

Because Catalogue then BodyWare is properly encapsulate this is a con-
sistent refinement.

Now, because rep is the only visible nonexecutable function symbol in the
body of Warehouse, the refinement (11.13) can be used in a single step ap-
plication of Process 11.3.6 to obtain the generic specification refinement

Warehouse′ "Warehouse
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where Warehouse′ is defined

spec Warehouse′[Catalogue] = BodyWarethen

〈〈∅, fA : etype(A), ∅〉, Drep[fA/rep], fA = extract(p3)〉with [fA �→ rep]

This specification can be rewritten to the equivalent, easier to read executable
refinement

spec Warehouse[Catalogue] =
BodyCat then

ops fA : Part→ Part
axioms ∀i : Part • In(fA(i), myCat)⇒ Rep(fA(i), i, myCat);

fA = fn i => hd(listOfReplacements(i))

11.3.4 Software development via specification refinement

Our methods yield a notion of provably correct systematic component develop-
ment and reuse.

Our method of refinement is done with respect to a repository of structured
programs. Once we refine a specification into a structured program, we can
add it back to this repository. This repository consists of executable specifica-
tions, consistent with respect to their derivation by refinement. The expanded
repository can then be used to the refinement of other abstract specifications.

A possible systematic development process results, of the form of Fig. 11.6.
By virtue of the refinement process, components developed in this way are
provably correct, in the sense of being relatively consistent with respect to the
specifications from which they are refined.

11.4 Discussion

Our methods require us to consider the relation between the specification struc-
ture and required implementation architecture carefully. We showed that spec-
ification building operations correspond to architectural design decisions. In
particular, we found that

• Our refinement process preserves and extends the structure of the original
abstract specification in the architecture of final executable specification. So
we must be careful with the abstract specification’s structure, because deci-
sions about this structure will affect the executable specification structure.

• Our use of the SSL calculus as in a method of constructing correct structured
programs entails that the structural and Skolemization rules now correspond
to architectural design decisions.
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Fig. 11.6. Software development using the process of executable refinement (Process
11.3.6).

This is in contrast to usual approaches to specification refinement, where a
structured specification is not considered to impose any architectural con-
straints on its final implementation. Architectural considerations are left as
outside the scope of structured specifications.

Our techniques are compositional by virtue of the fact that they are
grounded in a compositional proof system, SSL. SSL derives a proof about
a structured specification in a modular fashion, using knowledge about sub-
specifications to derive knowledge about the composed specification. By em-
ploying extraction to extend and refine specifications from a proof, we compo-
sitionally employ known results about subspecifications. Thus, the divide-and-
conquer approach of proof reuse in SSL corresponds to a form of knowledge
reuse in construction of architectures.
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Conclusions: Toward Constructive Logic as a
Practical 4GL

As we said at the beginning, ultimately, we would like to solve problems by
building well-structured, comprehensible, correct programs, solely through rea-
soning with domain knowledge. The discipline of the software engineer is still
far from realizing this goal in an industrial setting. This monograph has ex-
plored research ideas that are a small step in this direction which may be useful
in the long-term.

Traditional software development distinguishes between specification of re-
quirements and implementation of requirements. Specifications are not formally
included in the commonly used industrial third generation programming lan-
guages (3GLs).1 Instead, a specification is written in a different system (such
as English or predicate logic), and serves as a prescriptive goal to be achieved
through implementation.

This distinction leads to a division between the tasks of specification and
implementation. Although sometimes desirable, problems can result. In partic-
ular:

• The separation of tasks leads to an inefficient demarcation of development
roles, between specification expert and programmer. A specification expert
is needed to understand a problem, but is not usually skilled in providing a
solution. Implementation is a task that requires knowledge of and experience
with the programming language. A programmer is skilled in the technology
to provide a solution, but, by virtue of this, usually lacks knowledge about

1 We define 3GLs to be high-level procedural languages in which single instructions
abstract away from several lines of machine code. Examples of 3GLs are FORTRAN,
COBOL, C, C++, Java or C#. Programming a 3GL requires expertise that is
specific to this task. In contrast, 4GLs are meant to abstract away from 3GLs, with
the aim of enabling end-user programming that is, programming of a product by
the person who will use the product [Sch99a, 440–443]. For example, a spreadsheet
package may be thought of as a 4GL, which enables end-user programming for an
accountant. 4GLs may be procedural, such as Visual Basic for Applications (VBA),
or declarative, such as Microsoft Excel, SQL or Prolog.
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the problem domain. The different skills sets of the two roles can impede
communication and the process of development.

• Traditional implementation involves many issues that are orthogonal to the
problem domain. It would be preferable to minimize these issues, to facilitate
development that is driven entirely by specification, where the only skills
required are knowledge of and the ability to reason about the problem to be
solved.

• Because implementation is a separate task from specification, there is usually
no formal guarantee that an implementation correctly satisfies its specifica-
tion. For instance, ambiguities can arise in the transition from a specification
to implementation.

To solve these problems, program construction should be driven primarily
by knowledge of the problem domain, and less by orthogonal, language specific
issues.

This is the goal of many approaches to program synthesis. The idea is that,
given a specification, an automated or interactive process of synthesis yields
a program that behaves according to the specification. In this way, program
synthesis occurs at a higher level of abstraction than 3GL programming, forming
a 4GL infrastructure that can treat specification declaration as a part of the
programming task. Following Tyugu [Tyu88, p. 8], we distinguish three different
approaches to program synthesis:

• Transformational synthesis: a program is derived stepwise from a speci-
fication by means of transformations or refinements. Refinement calculi
[Dij76, MV93, Mor94, Bac80] achieve transformational synthesis through
languages that mix non-executable specifications and programs. These cal-
culi provide rules for refining non-executable specifications into executable
terms that satisfy the specification. Repeated recursive application of rules
over a term with non-executable subterms will eventually yield an executable
term. Related techniques [HHS85] have been employed to obtain structured
programs from both model-oriented specifications (such as B specifications
[Abr96, pp. 501–550]), and from algebraic structured specifications (such as
OBJ or CASL [CoF01]).

• Deductive synthesis: uses deduction of a proof of solvability of a problem and
derives a program from the proof. Deductive synthesis can be interactive
(semi-automated) or completely automated.
Automated deductive synthesis is what occurs in high-level logic program-
ming languages like Prolog and automatic theorem provers such as the
Boyer–Moore prover [BM79] or OTTER [McC92].
Interactive deductive synthesis often involves constructive logic, such as
the systems described in [MW91] and [KBB93]. Of these constructive ap-
proaches, a subset is based on forms of constructive type theories [HN88,
Tyu88, CMH86, CH88, PC01, CP01].

• Inductive synthesis: a program is based on a declaration of input-output
requirements or examples of input-output pairs. Examples of methods that
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fall into this category include inductive logic programming [Plo71, Mug92]
and neural and belief networks [RN95, pp. 563–597].

This monograph has been concerned with deductive and transformational
approaches. We have considered

• interactive deductive synthesis of imperative programs with side-effects (in
Part III) and

• the combination of deductive and transformational approaches for struc-
tured program synthesis (in Part IV).

Our approaches generalize the deductive synthesis techniques commonly re-
ferred to as proof-as-programs, based on constructive logic, type theory, and
the Curry–Howard isomorphism.

We have used a framework, called the Curry–Howard protocol, to identify
how to adapt proofs-as-programs to new logics and programming paradigms. A
strength of this framework is its apparent generality — we have demonstrated
it successfully with two separate contexts (imperative programs and structured
specifications). However, further use of the protocol will determine its ultimate
success as a general framework.

Why is it interesting to adapt proofs-as-programs to the new contexts?
We argue that the construction of a program should be driven more by

knowledge of the problem domain and less by orthogonal, language specific
issues. This is the goal of fourth generation programming languages (4GLs). To
move toward this goal, we have advocated the integration of specifications and,
more generally, the ability to reason about domain knowledge into the process
of program construction. Constructive logic permits us to define a system while
hiding as much low level implementation detail as possible. Constructive logic
does not require implementation knowledge, but only knowledge of, and the
ability to reason about, the problem domain.

In contrast to declarative, fully automated program synthesis, such as SQL
or Prolog, but similar to procedural languages such as C, Java or Microsoft’s
VBA, a constructive logic requires the development of a program to be guided
incrementally by a system designer. This permits a degree of design freedom,
which is important when developing complex system architectures for reuse
and manageability. Our work defines a 4GL in the sense that, programs can
be constructed purely through reasoning about domain knowledge. By the fact
that we use adapt constructive synthesis, we can guarantee that our synthesized
programs are correct with respect to their specification.

There already exist experimental 4GLs. However, most do not address two
concerns that are important for industry uptake:

• Many industrial programming tasks are essentially imperative in nature.
Common tasks usually involve state in some sense — for example, access-
ing and changing values in a database is fundamental to most industrial
applications. We argue that imperative issues will never disappear as indus-
trial concerns, no matter how high level the language used for development.
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Therefore a useful 4GL must in some way incorporate state. Our work in
imperative program synthesis in Part III addresses state issues, by extending
4GL proofs-as-programs ideas.

• Industrial strength programs are large and often difficult to maintain. Struc-
tured programming is an important means of developing and maintaining
a system according to compositional, divide-and-conquer principles. It is
therefore important that an industrial strength 4GL be intrinsically struc-
tured and compositional. The work of Part IV in synthesis, extension and
refinement using structured algebraic specifications represents a step in this
direction.

Our systems are by no means ready for industry use as they stand. Further
work must involve examining efficiency of extracted programs and ease of use
of our systems within a theorem proving environment.

However, we believe the results of this monograph are positive and, it is
hoped, will stimulate further investigation. By adapting constructive synthesis,
we have contributed some results toward the possibility of constructive logic
as a 4GL and the goal of building complex, correct imperative and structured
programs, solely through reasoning with domain knowledge.
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Constructive Logic

This appendix presents some background information on constructive logic,
type theory and the Curry–Howard isomorphism.

A.1 Constructive logic

Logic is the study of formal systems of deduction.
Classical logic is the most well-known formal system, formalizing the way in

which mathematicians commonly reason. However, many other formal systems
have been developed to reasoning about different domains.

Other formal systems include, amongst many others, modal logics [HC68],
the temporal logic of actions (TLA) [Lam94], the Hoare logic [Hoa69] and linear
logic [Gir87]. Each of these logics formalize some aspect of reasoning about a
problem domain. For instance, modal logics are used to formally reason about
possibility and necessity, while the TLA and Hoare Logic can be used to reason
about the dynamic behavior of distributed and imperative programs, respec-
tively.

Following classical logic, constructive (or intuitionistic) logic is one of the
earliest formal systems of deduction. Constructive logic has its roots in the
philosophy of Intuitionism, a position on the foundations of mathematics. In-
tuitionism was first described by Brouwer [Bro75, Bro81]. Its formalization
with constructive logic was given by Heyting [Hey71]. One of its most impor-
tant philosophical exponents was Dummett, with his anti-realist verificationist
meaning theory [Dum77, Dum91].

Intuitionism restricts the ways in which mathematical reasoning should be
done. It maintains that mathematics is dependent solely on the intuition of the
creative subject (the mathematician). This means that the objects of math-
ematics are constructions of the subject, whose properties and meaning are
given entirely by virtue of their construction. Consequently, for an intuitionist,
a mathematical proof is permissible in as much as it encodes the constructions
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of the subject. For instance, the truth of the statement (A∨¬A) is only known
if we can provide a construction that shows either A or ¬A to be true.

This is in contrast to the Platonic, realist view on mathematics, where ob-
jects and their meaning are considered to be external and objective, existing
in their own right apart from subjective creation. In that view, we can reason
about properties of an object that do not have to be constructed. Classical logic
complements this Platonic view. The semantics of classical logic presupposes
an external world in which statements are objectively true or false. Thus, in
classical logic, the statement (A ∨ ¬A) is true, because either A is true or not.

For the most part, intuitionism gained acceptance only in philosophical cir-
cles. It was not adopted by mathematicians, who, on the whole, freely use non-
constructive arguments when it suits them. However, constructive logic has
found great application in the realm of computer science, where the notion of
construction is fundamental (all programming is about constructing functions).
Its application is largely due to the correspondence between constructive proofs
and algorithms, resulting the Curry–Howard isomorphism property.1

A.1.1 Constructive evidence

Constructive logic is distinguished in that it requires constructive evidence of
a formula’s truth. There three important formal definitions of “constructive
evidence”:

1. a constructive proof,
2. a realizer, or
3. inhabitation of the formula seen as a type.

The Curry–Howard isomorphism is a property of constructive logic that shows
that these three notions are coincident. We now briefly review these definitions
and the isomorphism.

A.1.2 Constructive proofs

The notion of a constructive proof was first made precise by Kolmogorov and
Heyting [Kol32, Hey71]. In the Brouwer–Heyting–Kolmogorov (BHK) explana-
tion, provability of a compound formula is given in terms of the provability of
the components of the formula. This may be defined as follows, assuming that
we have a notion of constructive evidence for atomic formulae:

• A proof of an atomic formula A is constructive evidence that guarantees A.
• A proof of (A ∧B) is a construction that provides a proof of A and a proof

of B.
1 Also, from a philosophical perspective, it has been argued that constructive logic

need not be tied to intuitionism, and can in fact complement weaker notions of
constructivism, realist or Platonist views [Res00].
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• A proof of (A ∨ B) is a construction that provides either a proof of A or a
proof of B.

• A proof of (A ⇒ B) is a construction that, when given any proof of A
provides a proof of B.

• A proof of ∀x•A is construction that, when given a term a, provides a proof
of A[a/x].

• A proof of ∃x • A is a construction that provides a witness term a and a
proof of A[a/x].

• There is no proof of the absurdity, ⊥.

In this way, constructive evidence to support the truth of a compound formula
is to be found in the evidence that supports its components.

Gentzen devised the natural deduction calculus, a set of rules for building
constructive proofs [Gen69]. For instance, the (∨-I1) rule of natural deduction
tells us that we have a constructive proof of (A ∨ B), provided that we have a
constructive proof of A:

Γ � A
Γ � (A ∨B)

(∨-I1)

The (∀-I) rule tells us that we have a proof of ∀x • A provided that we have a
proof of A[y/x] for free variable x in A:

Γ � A[y/x]
Γ � ∀x •A

(∀-I)

A.1.3 Realizability

The original notion of realizability was introduced by Kleene in [Kle45, Kle52]
as a semantics for intuitionistic arithmetic. His idea was to show that natural
numbers can be used to encode constructive evidence of formula truth.

Given formulae about the natural numbers, we can take the set of realizers
to range over functional terms built from the naturals with pairs, projections
(π1 and π2), disjoint unions (formed using inl and inr) and a unit constant ().2

Then, we say that a formula is valid (realizable) when we can find a realizer for
it, according to the following definition:

• () is realizer of an atomic formula A if A is true.
• p realizes (A ∧B) if π1(p) realizes A and π2(p) realizes B.
• p realizes (A∨B) if it is of the form inl(q) with q realizing A, or of the form

inr(q) with q realizing B.
• p realizes A → B, if it is a functional such that, given any realizer q of A,

(pq) is a realizer of B.
2 Kleene’s original definition was for formulae, and involved functionals encoded as

natural numbers. Later, more general definitions of realizability were developed
using combinatorial algebra or the lambda calculus to define functionals.
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• p is realizer of ∀x • A if it is a functional, such that, when given a number
t, provides a realizer (pt) of A[t/x].

• p is a realizer of ∃x • A, such that, π1(p) = t for a witness number t and
π2(p) realizes A[t/x].

• There is no realizer of the contradiction, ⊥.

When a realizer can be constructed for a formula, it is true. In this way, a
realizer corresponds to Brouwer’s notion of constructive evidence to support
the formula.

This notion of realizability can be adapted to many-sorted and higher-order
formulae. Since then, various variations on the idea have been developed —
see Troelstra [Tro73, Tro98] for a detailed overview. In our work, we shall be
concerned with realizability for many-sorted formulae with functional sorts.

A.1.4 The Curry–Howard isomorphism

A third notion of constructive validity is given by the Curry–Howard isomor-
phism. This property tells us that constructive natural deduction corresponds
to a kind of type theory, where proofs correspond to terms, formulae to types,
logical rules to type inference and proof normalization to term simplification.
The original idea was first described by Curry in [Cur34] and extended to in-
tuitionistic first order logic by Howard [How80].

Essentially, a constructive type theory corresponding to natural deduction
for predicate logic is a typed lambda calculus with dependent product and sum
types and disjoint unions. The rules of natural deduction then have correspond-
ing type formation rules.
Example A.1. The (∨-I1) rule of natural deduction corresponds to a typing rule

Γ � pA

Γ � inl(p)A∨B
∨-I1

which tells us that inl(p) is correctly typed with A∨B, provided that p is typed
with A. The formula A ∨B is taken to be a disjoint union type.
Example A.2. For instance, the (∀-I) rule of natural deduction for first order
constructive logic with arithmetic corresponds to a typing rule

Γ � pA[y/x]

Γ � λx.p∀x•A
(∀-I)

that tells us that λx.p is correctly typed with ∀x • A, provided that p is typed
with A[y/x]. The formula ∀x•A is taken as a dependent product type, by virtue
of the type inference rule corresponding to (∀-E):

Γ � p∀x•A

Γ � λx.(pa)A[a/x]
(∀-E)
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This is the elimination rule for dependent product types, because it shows that
∀x •A parametrizes the type A over possible instantiation by the number a.

We can view the isomorphism as a means of relating the BHK interpretation
of logical connectives to a form of constructive realizability (similar to that given
by Diller [Dil80]). This is achieved if we take realizability to be inhabitation of
types by terms, as the lambda calculus enables definition of functionals.

A.2 Constructive type theories

First order and many-sorted logic have straightforward type theories, similar
in form to that given by Howard [How80] for first order logic (see, for instance,
[Sch99b, pp. 1–13]). Crossley and Shepherdson [CS93] provided a constructive
type theory that is modular over sorts (datatypes such as natural numbers,
booleans, lists, etc). We will also see that, by treating sorts as closed under
functional constructors, we can provide a limited form of higher-order reasoning.

The Curry–Howard isomorphism also can be applied to a range of fully
higher-order constructive type theories, each corresponding to a different form
of constructive logic that permits predication over logical formulae.

The main motivation of these theories is to provide a single framework
that unifies logical reasoning about computational objects with the typing of
these objects. Typically, a programming language can be understood with a
type system that defines the type of values for input and output of functions,
and reduction rules for evaluating function application. By the Curry–Howard
isomorphism, logic is also such a type system. Because logic reasons about
computational entities, it is of foundational interest to examine how logical and
computational domains can be unified within a single type theory.

For our purposes, unified higher-order theories are worth describing briefly,
as they form the basis of two important program synthesis methods (Nuprl
and Coq). As we shall later see, our work presents a different approach to
program synthesis, which argues against unified type system for programming
and reasoning.

A.2.1 Higher-order type theories

Higher-order type theories fall into two camps: the predicative theories and
impredicative theories. The differences lie in impredicativity — the scope of
quantification over types to form new types. Impredicativity is an important
issue, because, if treated incorrectly, a paradoxical type system can arise. For
example, Martin-Löf’s original constructive type theory permitted a type of all
types that contains itself as a term and is closed under quantification. Girard
showed that this type theory entails that every type is inhabited and so corre-
sponds to an inconsistent logic, exhibiting a form of Russell’s paradox [Gir72].
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A.2.2 Predicative type theories

The predicative type theories of Martin-Löf [ML75, ML84] restricts quantifica-
tion according to hierarchies of type universes. Quantification over types from
one universe forms a type of a higher universe, such that lower universe types
cannot quantify over types of higher universes.

The idea is as follows. Basic computational datatypes (for example, integers
and booleans) are defined in a base universe U0. This universe is closed under
logical formula types that predicate over the basic types. However, datatypes
that define functions over U0 or formulae that quantify over U0 are necessarily
types of the next universe U1. The rest of the universe hierarchy is similarly
constructed.

In these theories, datatypes and logical types can be represented within
a single type theory and are treated similarly. Logical types are introduced
by means of introduction and elimination rules corresponding to natural de-
duction rules. Datatypes are also introduced via construction typing rules for
constructors and eliminated by typing rules for recursion operators.

These predicative theories are essentially functional programming languages,
but with more powerful type systems. This is an advantage for the program-
mer, because, in particular, Martin-Löf describes an extensible methodology in
which we are permitted to define new datatypes, simply by adding introduction,
elimination, and reduction rules. This corresponds to programming practice of
defining new abstract data types. However, these theories have a disadvantage
for the logician or mathematician, as their syntax and usage differs significantly
from more commonly used deductive systems (such as many-sorted logic).

A.2.3 Impredicative type theories

The impredicative type theories of, for instance, Girard [Gir72], Reynolds
[Rey74] and Coquand [MLM90] permit quantification over types to form a type
itself. For instance, in Coquand’s calculus of constructions [MLM90], formulae
types may be formed by universal quantification over any type including Prop,
the type of all formulae types. Thus, ∀P : Prop.P is a proposition of type Prop.
To avoid paradox, these impredicative theories require that the type of formulae
types is not itself a formulae type, but a different kind of type (so all formulae
correspond to types, but not all types correspond to formulae).

In contrast to predicative theories, impredicative theories do not treat
datatypes and logical propositions as the same — but rather encode the former
using the latter. This results from the computational power of predicative theo-
ries, that permits an encoding of commonly used computational datatypes (see,
e.g., [BB85]). For example, the natural numbers datatype can be represented
using Church numerals, with the polymorphic type ∀P : Prop.P → (P → P )→
P .

While mathematically elegant, such encodings are unnatural and inefficient
for programming. No software engineer would use Church numerals to write
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arithmetic functions, because the syntax is difficult to understand and evalua-
tion is typically impractical (for example, Church-style numbers have no linear-
time predecessor function).

Luo’s extended calculus of constructions [Luo94] solves some practical prob-
lems with impredicative theories, unifying an impredicative logical type theory,
for representing higher-order constructive logic, with a predicative computa-
tional type theory of datatypes, for representing objects in the logic.

A.2.4 Theorem proving

The isomorphism and constructive type theories have been used in many in-
teractive theorem provers — for example, the Endinburgh Logical Framework
[GMW79, HHP87], Nuprl [CMH86], Isabelle [NPW02] and the ALF system
[MN94]. One of the earliest approaches to theorem proving with type theory
was the Automath work [Bru70]. Amongst other advantages, type theory per-
mits complex proof tactics and parametrized lemmata to be given simply as
functions over terms, and the automation of proof simplification.

A.2.5 Disadvantages of unified type theories

Higher-order type theories aim to represent datatypes and logical formulae
within the same system. It can be argued that, while useful from a founda-
tional perspective, such approaches are not desirable in practice.

In general, programming and logical reasoning are two very different tasks.
Implementations of higher-order type theories have existed for over 30 years
now, but have largely failed to make an impact in the software development
community — in contrast to, for instance, the Hoare Logic [Hoa69] or model-
based refinement methods such as the B method [Abr96].

It is possible that this failure is due to the very nature of a unified system
of program typing and logical reasoning. By definition, such a system aims to
do two complicated tasks, and necessarily has a more complicated syntax and
a steeper learning curve.

We hypothesize that, following the more successful approaches to formal
software development, different languages for programming and logical reason-
ing should still be employed in practice. This motivates the work of Crossley
and Shepherdson [CS93], which emphasized the importance of a logic that is
commonly understood by people trained in formal reasoning for software devel-
opment (such as first-order or many-sorted logic).

The idea of separating proofs is essential to the Curry–Howard protocol,
described in Part II of this monograph. Parts III and IV of this monograph
are applications of the protocol, and can be seen as a further argument for
the separation of proofs from programs, to achieve a practical approach to
constructive synthesis in new logical and programming contexts.
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versite Paris VII, 1972.

[Gir87] , Linear Logic, Theoretical Computer Science 50 (1987), 1–102.
[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor, Proofs and types, Cam-

bridge University Press, Cambridge, 1989.
[GMW79] Michael Gordon, Robin Milner, and Christopher Wadsworth, Edinburgh

LCF: a Mechanized Logic of Computation, Lecture Notes in Computer
Science (LNCS), vol. 78, Springer-Verlag, Berlin, 1979.

[GN87] Michael R. Genesereth and Nils J. Nilsson, Logical Foundations of Artifi-
cial Intelligence, Morgan Kaufmann Publishers, 1987.

[Gri90] Timothy G. Griffin, The formulae-as-types notion of control, Conference
Record of the 17th Annual ACM Symposium on Principles of Program-
ming Languages, POPL’90, San Francisco, CA, USA, 17–19 Jan 1990,
ACM Press, 1990, pp. 47–57.

[Gru93] T. R. Gruber, A translation approach to portable ontology specifications,
Knowledge Acquisition 5 (1993), no. 2, 199–220.

[GS78] T. Gergely and M. Szöts, On the incompleteness of proving partial cor-
rectness, Acta Cybernetica 4 (1978), no. 1, 45–57.

[Gun93] Carl A. Gunter, Semantics of Programming Languages, MIT Press, 1993.
[GWM+00] Joseph Goguen, Timothy Winkler, Jose Meseguer, Kokichi Futatsugi,

and Jean-Pierre Jouannaud, Introducing OBJ3, Software Engineering with
OBJ: Algebraic Specification in Action, Kluwer Academic Publishers,
Boston, 2000.

[Har60] Ronald Harrop, Concerning formulas of the types A → B ∨ C,
Arightarrow(Ex)B(x) in intuitionistic formal systems, Journal of Sym-
bolic Logic 25 (1960), no. 1, 27–32.

[Har84] David Harel, Dynamic Logic, Handbook of Philosophical Logic (Dov Gab-
bay and F. Guenthner, eds.), Oxford University Press, 1984.

[Hay90] Susumu Hayashi, An introduction to PX, Logical Foundations of Func-
tional Programming (Reading, MA) (Gerard Huet, ed.), Addison-Wesley,
1990.

[HC68] G. E. Hughes and M. J. Cresswell, Introduction to Modal Logic, Methuen,
London, 1968.

[Hey71] Arend Heyting, Intuitionism: An Introduction, North-Holland, 1971.
[HH86] C.A.R. Hoare and Jifeng He, The weakest prespecification, Fundamenta of

Informaticae 9 (1986), Part I: 51–84, Part II: 217–252.
[HHH+87] C.A.R. Hoare, Ian Hayes, Jifeng He, Carol C. Morgan, A. W. Roscoe,

Jeff W. Sanders, I. H. Sorensen, J. Michael Spivey, and Bernard Sufrin,
Laws of programming, Communications of the ACM 30 (1987), no. 8,
672–686.



References 411

[HHP87] Robert Harper, Furio Honsell, and Gordon Plotkin, A framework for defin-
ing logics, Proceedings of the 2nd Annual IEEE Symposium on Logic in
Computer Science, LICS’87, Ithaca, NY, USA, 22–25 June 1987, IEEE
Computer Society Press, 1987, pp. 194–204.

[HHS85] Jifeng He, C.A.R. Hoare, and Jeff W. Sanders, Data Refinement Refined,
Oxford, 1985.

[HHS87] C.A.R. Hoare, Jifeng He, and Jeff W. Sanders, Prespecification in data
refinement, Information Processing Letters 24 (1987), no. 2, 127–132.

[HKPM97] Gérard P. Huet, Gilles Kahn, and Christine Paulin-Mohring, The Coq
Proof assistant Reference Manual: Version 6.1, Coq project research re-
port RT-0203, Inria, 1997.

[HN88] Susumu Hayashi and Hiroshi Nakano, PX, a Computational Logic, Foun-
dations of Computing, MIT Press, 1988, Electronic edition available at
http://www.shayashi.jp/PXbook.html (Accessed May 2003).

[Hoa69] C. A. R. Hoare, An axiomatic basis for computer programming, Commu-
nications of the Association for Computing Machinery 12 (1969), 576–80.

[Hoa81] , A calculus of total correctness for communicating processes, Sci-
entific Computational Programming 1 (1981), no. 1–2, 49–72.

[Hoa85] , Communicating Sequential Processes, Prentice-Hall, 1985.
[How80] William A. Howard, The formulae-as-types notion of construction, To H.

B. Curry : Essays on Combinatory logic, Lambda calculus, and Formalism,
Academic Press, London, New York, 1980, pp. 479–490.

[HS86] John Roger Hindley and Jonathan Seldin, Introduction to Combinators
and Lambda-Calculus, Cambridge University Press, 1986.

[HS96] Martin Hofmanna and Donald Sannella, On behavioural abstraction and
behavioural satisfaction in higher-order logic, Theoretical Computer Sci-
ence 167 (1996), no. 1-2, 3–45.

[HWB97] Rolf Hennicker, Martin Wirsing, and Michel Bidoit, Proof systems for
structured specifications with observability operators, Theoretical Com-
puter Science 173 (1997), no. 2, 393–443.

[JPBC03] John S. Jeavons, Iman Poernomo, Bolis Basit, and John Crossley, A lay-
ered approach to extracting programs from proofs with an application in
Graph Theory, Proceedings of the 7th and 8th Asian Logic Conferences
(Rod Downey, Ding Decheng, Tung Shih Ping, Qiu Yu Hui, Mariko Yasugi,
and Guohua Wu, eds.), Singapore University Press and World Scientific,
2003, pp. 193–222.

[KBB93] Ina Kraan, David A. Basin, and Alan Bundy, Logic program synthesis via
proof planning, Logic Program Synthesis and Transformation, Proceedings
of LOPSTR 92, International Workshop on Logic Program Synthesis and
Transformation, University of Manchester, 2-3 July 1992 (Berlin) (Kung-
Kiu Lau and Tim P. Clement, eds.), Workshops in Computing, Springer-
Verlag, 1993, pp. 1–14.

[Kle45] Steven Cole Kleene, On the interpretation of intuitionistic number theory,
Journal of Symbolic Logic (1945), no. 10, 109–124.

[Kle52] , Introduction to Metamathematics, North-Holland, 1952.
[KMND00] Jeff Kramer, Jeff Magee, Keng Ng, and Naranker Dulay, Software archi-

tecture description, Software Architecture for Product Families: Principles
and Practice (Reading, MA), Addison-Wesley, 2000, pp. 31–64.

[Kol32] Andrei Nikolaevich Kolmogorov, Zur deutung der intuitionistischen logik,
Mathematische Zeitschrift 35 (1932), 58–65.



412 References

[Koz97] Dexter Kozen, Kleene algebra with tests, ACM Transactions on Program-
ming Languages and Systems 19 (1997), no. 3, 427–443.

[Kre59] George Kreisel, Interpretation of analysis by means of constructive func-
tionals of finite types, Constructivity in Mathematics (Arend Heyting,
ed.), North-Holland, Amsterdam, 1959, pp. 101–128.

[KST97] Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki, The definition of
Extended ML: A gentle introduction, Theoretical Computer Science 173
(1997), 445–484.

[Lam94] Leslie Lamport, The Temporal Logic of Actions, ACM Toplas 3 (1994),
872–923.

[Lei94] Daniel Leivant, Higher order logic, Handbook of Logic in Artificial Intel-
ligence and Logic Programming (Dov M. Gabbay, C. J. Hogger, and J. A.
Robinson, eds.), vol. 2, Oxford University Press, 1994, pp. 229–3211.

[Luo94] Zhaohui Luo, Computation and Reasoning: A Type Theory for Computer
Science, Oxford University Press, 1994.

[McC92] William McCune, Automated discovery of new axiomatizations of the left
group and right group calculi, Journal Of Automated Reasoning 9 (1992),
no. 1, 1–24.

[Mey97] Bertrand Meyer, Object-Oriented Software Construction, Prentice-Hall,
1997.

[Mey00] , Agents, iterators and introspection, Technology paper, ISE
Corporation, available at http://archive.eiffel.com/doc/manuals/
language/agent/page.html (Accessed May 2003), May 2000.
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